Direct Measurement of Intracellular O2 Gradients; Role of Convection and Myoglobin

  • T. E. J. Gayeski
  • Carl R. Honig
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 159)


It is generally assumed that free and/or facilitated diffusion is solely responsibile for O2 transport from capillary to mitochondria (4, 8, 14, 15).


Diffusion Equation High Work Rate Frost Formation Capillary Transit Time Phasic Exercise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chance, B., Haselgrove, J., Barlow, C. Redox gradients in oxygen delivery to tissue. Adv. Physiol. Sci. 25: 13–17 1981.Google Scholar
  2. 2.
    Connett, R. J., Gayeski, T. E. J., Honig, C. R. Lactate production in a pure red muscle in absence of anoxia; mechanisms and significance. Adv. Exper. Med. Biol. In Press, 1982.Google Scholar
  3. 3.
    Elliott, G. F., Lowy, J. and Millman, B. M. Low angle X-ray diffraction studies of living striated muscle during contraction. J. Mol. Biol. 25: 31–45, 1967.PubMedCrossRefGoogle Scholar
  4. 4.
    Fletcher, J. E. On facilitated oxygen diffusion in muscle tissues. Biophys. J. 29: 437–458, 1980.PubMedCrossRefGoogle Scholar
  5. 5.
    Gayeski, T. E. J. and Honig, C. R. Myoglobin saturation and calculated P02 in single cells of resting gracilis muscles. Adv. Exper. Med. Biol. 94: 7784, 1978.Google Scholar
  6. 6.
    Gayeski, T. E. J. A Cryogenic Microspectrophotometric Method for Measuring Myoglobin Saturation in Subcellular Volumes; Application to Resting Dog Gracilis Muscle. Thesis, University of Rochester, Rochester, N. Y. 1981.Google Scholar
  7. 7.
    Grunewald, W. A. and Lubbers, D. W. Die Bestimmung der intrakapillaren HbO2-Sattigung mit einer kryomikrofotometrischen methode angewandt am myokard des kaninchens. Pflüger’s Arch. 353: 255–273, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Grunewald, W. A. and Sawa, W. Capillary structures and 02 supply to tissue. Rev. Physiol. Biochem. Pharmacol. 77: 149–209, 1977.CrossRefGoogle Scholar
  9. 9.
    Honig, C. R. and Odoroff, C. L. Calculated dispersion of capillary transit times: singnificance for oxygen exchange. Am. J. Physiol. 240: H122 - H129, 1981.Google Scholar
  10. 10.
    Honig, C. R., Odoroff, C. L., Frierson, J. L. Capillary recruitment in exercise: rate, extent, magnitude and relation to blood flow. Am. J. Physiol. 238: H31 - H42, 1980.PubMedGoogle Scholar
  11. 11.
    Honig, C. R., Connett, R. J., Gayeski, T. E. J. Functional 02 shunt in dog gracilis muscle during work near VO2. Am. J. Physiol. Submitted.Google Scholar
  12. 12.
    Klitzman, B., Duling, B. R. Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am. J. Physiol. 237: H481 - H490, 1979.PubMedGoogle Scholar
  13. 13.
    Kreuzer, F. and Yahr, W. Z. Influence of red cell membrane on diffusion of oxygen. J. Appl. Physiol. 15: 1117–1122, 1960.Google Scholar
  14. 14.
    Krogh, A. The supply of oxygen to the tissues and the regulation of the capillary circulation. J. Physiol. (Lund.) 52: 457–474, 1919.Google Scholar
  15. 15.
    Popel, A. S. Mathematical modelling of convective and diffusive transport in the microcirculation. In: Mathematics of Microcirculation Phenomena. J. F. Gross and A. Popel, eds. pp. 63–88, Raven Press, New York, 1980.Google Scholar
  16. 16.
    Rossei-Fanelli, A. and Antonini, E. Studies on the oxygen and carbon monoxide equilibria of human myoglobin. Arch. Biochem. Biophys. 77: 478–492, 1958.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • T. E. J. Gayeski
    • 1
  • Carl R. Honig
    • 1
  1. 1.School of Medicine & DentistryUniversity of RochesterRochesterUSA

Personalised recommendations