Advertisement

Responses of the “Hypoxic Resistant” R15 Neuron of Aplysia to Reduced Extracellular Oxygen Tensions

  • P. E. Coyer
  • J. H. HalseyJr.
  • E. R. Strong
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 159)

Abstract

The abdominal ganglion of Aplysia is a unique electrophysiological preparation for studying the effect of various intracellularly injected or extracellularly suffused agents. (16, 18, 22, 23, 24) Much work has been done on (i) the role of cAMP inhibitors and promoters of synaptic activity, effects which can be labeled as “long-lasting” and extend from milliseconds to minutes; (7, 15) (ii) the study of neurotransmittpr specificity by iontophoretic application of putative neurotransmitters onto the ganglion; (17, 25) and (iii) the interruption of the characteristic electrophysiological burst pattern of these cells by administration of compounds which influence routes of cellular metabolism. (4) During intracellular recording of these neurons’ membrane potentials, the chatosensitivity of their electrical responses has been analyzed by equilibrating the suffusate with CO2, N2, or O2. (1, 2). Furthermore, evaluations of gaseous equilibration on nerve cell metabolism and activity have been achieved through measurements of the membrane potential and intracellular PO2 using spectrophotanetirc techniques. (3) It is known that the addition of citrate, ATP, and D-fructose 1, 6-di phosphate, compounds which interfere with the phosphofructokinase step in glycolysis, alters the cyclic patterns of bursting in pacemaker neurons of this ganglion. (4).

Keywords

Hypoxic Exposure Spike Amplitude Iontophoretic Application Putative Neurotransmitter Spike Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chalazonitis, N. Ann. N. Y. Acad. Sci., 109: 451, 1963.PubMedCrossRefGoogle Scholar
  2. 2.
    Chalazonitis, N. and H. Takeuchi. C. r. Seanc. Soc. Biol. 258: 2400, 1964.Google Scholar
  3. 3.
    Chalazonitis, N., Gola, M. and Arvanitaki, A. C.r. Seanc. Soc. Biol. 159: 2440, 1965.Google Scholar
  4. 4.
    Chaplain, R. A. J. exp. Biol. 81: 113, 1979.Google Scholar
  5. 5.
    Coyer, P. E. and E. R. Strong Proc. Int. Union. Physiol. Sci. XIV: 362, 1980.Google Scholar
  6. 6.
    Coyer, P. E., Halsey, J. H., Jr., and E. R. Strong, Conp. Biochen. Physiol. 68A: 579, 1981.CrossRefGoogle Scholar
  7. 7.
    Drake, P. F. and Triestman, S. N. J. Neurobiol. 11: 471, 1980.PubMedCrossRefGoogle Scholar
  8. 8.
    Eckert, R. and Lux, H. D. Science 197:472, 1977. PubMedCrossRefGoogle Scholar
  9. 9.
    Eckert, R. and Tillotson, D. J. Phy iôl. (Lund.) 314: 265, 1981.Google Scholar
  10. 10.
    Eckert, R., Tillotson, D. L. and Brehm, P. Fed. Proc., Fed. Am. Soc. Exp. Biol. 40: 2226, 1981.Google Scholar
  11. 11.
    Erdmann, W., Krell, W., Netzger, H. and Nixdorf, I. Pflugers Arch. 319: R69, 1969.Google Scholar
  12. 12.
    Gorman, A. L. F. and Thomas, M. V. J. Physiol. (Land.) 308: 259, 1980.Google Scholar
  13. 13.
    Gorman, A. L. F., Hermann, A. and Thomas, M. V. Fed. Proc., Fed. Am. Soc. Exp. Biol. 40:2233, 1981.Google Scholar
  14. 14.
    Hagiwara, S., and Byerly, L. Fed. Proc., Fed. Am. Soc. Exp. Biol. 40: 2220.Google Scholar
  15. 15.
    Juel, C. Camp. Biochen. Physiol. 68C: 21, 1981.Google Scholar
  16. 16.
    Kandel, E. R. In The Interneuron. M. A. B. Brazier (Ed.), Berkley and Los Anglels: University of California Press, 71, 1969.Google Scholar
  17. 17.
    Kehoe, J. S. J. Physiol. (Land.) 255: 115, 1972.Google Scholar
  18. 18.
    Kreisman, N. R., Murphy, M. F. and King. W. M. Comp. Biochen. Physiol. 60C: 145, 1978.CrossRefGoogle Scholar
  19. 19.
    Kunze, D. L. and Brawn, A. M. Nature London, New Biol. 229: 229, 1971.Google Scholar
  20. 20.
    Kupfermann, I. and Weiss, K. R. J. Gen. Physiol. 67: 113, 1976.CrossRefGoogle Scholar
  21. 21.
    Owen, J. D., Saunders, J. H. and Brown, H. M. Camp. Biochen. Physiol. 66A: 197, 1980.CrossRefGoogle Scholar
  22. 22.
    Scappaticci, K. A., Dretchen, K. L. Carpenter, D. O. and Pellmar T. C. J. of Neurobiol. 12: 329, 1981CrossRefGoogle Scholar
  23. 23.
    Smith, T. G., Barker, J. L. and Gainer, H. Nature 253: 450, 1975.PubMedCrossRefGoogle Scholar
  24. 24.
    Strumwasser, F. J. Psychiatric Res. 8: 237, 1971.CrossRefGoogle Scholar
  25. 25.
    Tauc, L. and Gershenfeld, H. M. J. Neurophysiol. 25: 236, 1962.PubMedGoogle Scholar
  26. 26.
    Thomas, M. V. and Gorman, A. L. F. Science 196: 531, 1977.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • P. E. Coyer
    • 1
  • J. H. HalseyJr.
    • 1
  • E. R. Strong
    • 1
  1. 1.Department of Neurology and the Neurosciences ProgramUniversity of Alabama in BirminghamBirminghamUSA

Personalised recommendations