O2 Uptake and Release by Red Cells Through Plasma Layer and Capillary Wall

  • Arabinda K. Sinha
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 159)


The O2 transport system of air-breathing animals includes two (in lung and tissue capillaries) diffusion-reaction components connected by the convective mixing of blood circulation. In the lung, the overall diffusion process is separable into two gross components: 1) through the alveolar-capillary membrane and plasma, and 2) through the red cell. Almost all the studies of the simultaneous diffusion and chemical reaction components have dealt only with the rate of O2 exchange between red cells and surrounding plasma or with overall measures of the process, such as diffusing capacity of the lung.


Cover Glass Plasma Layer Oscilloscope Trace Desaturation Process Polyvinyl Formal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caspersson, T. O. Cell growth and cell function — a cytochemical study. W. W. Norton, New York, 1950, p. 185.Google Scholar
  2. 2.
    Thorell, B. Studies on the formation of cellular substances during blood cell production. Acta Medica. Scand. 129 (Suppl. 200): 1–120, 1947.Google Scholar
  3. 3.
    Thews. G. Untersuchung der Sauerstoffaufnahme und-abgabe sehr dunner Blutlamellen. Arch Ges. Physiol. 268: 308–317, 1959.CrossRefGoogle Scholar
  4. 4.
    Sinha, A. K., J. A. Neubauer, J. A. Lipp âni H. R. Weiss. Saturation determination in frozen blood. Microvasc. Res. 10: 312–321, 1975.PubMedCrossRefGoogle Scholar
  5. 5.
    Sinha, A. K., J. A. Neubauer, J. A. Lipp, and H. R. Weiss. Microspectrophotometric determination of blood 02 saturation in frozen tissue. Microvasc. Res. 14: 133–144, 1977.PubMedCrossRefGoogle Scholar
  6. 6.
    Pittman, R. N., and B. R. Duling. A new method for the measurement of percent oxyhetoglobin. J. Appl. Physiol. 38: 315–320, 1975.PubMedGoogle Scholar
  7. 7.
    Van Slyke, D. D., H. Wu and F. C. McLean. Studies of gas and electrolyte equilibria in the blood. J. Bibl. Chem. 56: 765–849, 1923.Google Scholar
  8. 8.
    Dittmer, D. S. and R. M. Grebe. Handbook of respiration. W. B. Saunders, Philadelphia, 1958, P. 403.Google Scholar
  9. 9.
    Waldeck, F. Ein Mikrophotarietrisches Verfahren zur Aufnahme der Sauerstoffbindungskurve von einzelnen Erythrocyten. Arch. Ges Physiol. 295: 1–14, 1967.CrossRefGoogle Scholar
  10. 10.
    Legge, J. W., and F. J. W. Roughton. Some observations on the kinetics of haemoglobin in solution and in the red blood corpuscle. Biochem. J. 47: 43–52, 1950.PubMedGoogle Scholar
  11. 11.
    Forster, R. E., F. J. W. Roughton, F. Kreuzer and W. A. Briscoe. Photocolorimetric determination of rate of uptake of CO and 02 by reduced human red cell suspensions at 37°C. J. Appl. Physiol. 11: 260–268, 1957.PubMedGoogle Scholar
  12. 12.
    Edwards, M. J., and N. C. Staub. Kinetics of 02 uptake by erythrocytes as a function of cell age. J. A~pl. Physiol. 21: 173–176, 1966.Google Scholar
  13. 13.
    Lawson, W. H., Jr., R. A. B. Holland and R. E. Forster. Effect of changes in temperature on rate of dissociation of oxygen from human erythrocytes. Fed. Proc. 21: 442, 1962.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Arabinda K. Sinha
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Medicine and Dentistry of New Jersey Rutgers Medical SchoolPiscatawayUSA

Personalised recommendations