Advertisement

Characterization of Oxygen-Hemoglobin Equilibrium Curves Using Nonlinear Regression of the Hill Equation: Parameter Values for Normal Human Adults

  • John F. O’Riordan
  • Thomas K. Goldstick
  • Jørn Ditzel
  • J. Terry Ernest
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 159)

Abstract

Measurements of oxygen concentration versus PO2 in blood from 33 normal adults were fitted, using a special nonlinear regression analysis, to the Hill equation to obtain the parameters describing the position (P50) and shape (n) of each oxygen-hemoglobin equilibrium curve (OHEC). Data between 20% and 97% saturation were described well by this empirical two-parameter model. The mean (+ SD) P50 and n were found to be 26.2 (+ 0.8) torr and 2.50 (+0.07), respectively, in good agreement with previously published values. Some normal individuals, however, deviated markedly from the averages indicating that the published values cannot be applied to everyone.

Keywords

Dissociation Curve Hill Equation Scatchard Plot Equilibrium Curve Bohr Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, G. S., “The Oxygen Dissociation Curve of Hemoglobin,” J. Biol. Chem., 63, 529–545, 1925.Google Scholar
  2. Draper, N. R. and Smith, H. Applied Regression Analysis, (New York: John Wiley and Sons), pp. 263–304, 1966.Google Scholar
  3. Duvelleroy, M. A., Buckles, R. G., Rosenkaimer, S., Tung, C., and Laver. M. B., An Oxyhemoglobin Dissociation Analyzer, J. Appl. Physiol., 28, 227–233, 1970.PubMedGoogle Scholar
  4. Fletcher, J. E., A Generalized Approach to Equilibrium Models, Journal of Physical Chemistry, 81, 2374–2378, 1977.CrossRefGoogle Scholar
  5. Garby, L. and Meldon, J., The Respiration Functions of Blood, (New York: Plenum Medical Book Co.), P. 38, 1977.CrossRefGoogle Scholar
  6. Hill, A. V., The Possible Effects of the Aggregation of the molecules of Hemoglobin on its Dissociation Curves, J. Physiol., London, 40: (Proceedings) iv, 1910.Google Scholar
  7. Kelman, G. R., Digital Computer Subroutine for the Conversion of Oxygen Tension into Saturation, J. Appl. Physiol., 21, 1375–1376, 1966.PubMedGoogle Scholar
  8. Kelman, G. R. and Minn, J. F., Nomograms for Correction of Blood PO2, PCO2, pH and Base Excess for Time and Temperature, J. Appl. Physiol., 21, 1484–1490, 1966.PubMedGoogle Scholar
  9. Perutz, M. F. Stereochemistry of Cooperature Effects on Hemoglobin, Nature, 228, 726–739, 1970.PubMedCrossRefGoogle Scholar
  10. Robinson, B., NLREG-Nonlinear Regression Subroutine Package, (Evanston, IL: Vogelback Computer Center Document No. 328 (Rev. B), Northwestern University), 1981.Google Scholar
  11. Boughton, F. J. W., Transport of Oxygen and Carbon Dioxide, in Handbook of Physiology, Sec 3: Respiration, 3 vols., W. Fenn and H. Rahn, eds. ( Washington: American Physiological Society ), 1964.Google Scholar
  12. Boughton, F. J. W., DeLand, E. C., Kernohan, J. C., and Severinghaus, J. W., Some Recent Stodies of the Oxyhemoglobin Dissociation Curve of Human Blood Under Physiological Conditions and the Fitting of the Adair Equation to the Standard Curve, Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, M. Borth and P. Astrup, eds. (New York: Academic Press), pp. 77–83, 1972.Google Scholar
  13. Severinghaus, J. W., Blood Gas Calculator, J. Appl. Physiol., 21, 1108–1116, 1966.PubMedGoogle Scholar
  14. Severinghaus, J. W., Simple, Accurate Expressions for Human Blood Oxygen Dissociation Computations, J. Appl. Physiol.: Respirat. Environ. Excercise Physiol., 46, 599–602, 1979.Google Scholar
  15. West, J. B., Respiratory Physiology: The Essentials, 2nd ed., (Baltimore: Williams and Wilkens), p. 71, 1979.Google Scholar
  16. Winslow, R. M., Nbrrissey, J. M., Berger, R. L., Smith, P. D., and Gibson, C. C., Variabilith of Oxygen Affinity of Normal Blood: An automated Method of Measurement, J. Appl. Physiol.: Respirat. Environ. Excercise Physiol., 45, 289–297, 1978.Google Scholar
  17. Winslow, R. M., Swenberg, M., Berger, R. L., Shrager, R. I., Luzzana, M., Samaja, M.., and Rossi-Bernhaardi, L., Oxygen Equilibrium Curve for Normal Human Blood and Its Evaluation by Adair;s Equation, J. Biol. Chem. 252, 2331–2337, 1977.PubMedGoogle Scholar
  18. Zander, R., Oxygen Solubility in Normal Human Blood, Adv. Physiol. Sci., 25, A. G. B. Kovach, E. Dora, M. Kessler and I. A. Silver eds. (Oxford, England: Pergamon Press) pp. 331–332, 1981.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • John F. O’Riordan
    • 1
    • 2
    • 3
  • Thomas K. Goldstick
    • 1
    • 2
    • 3
  • Jørn Ditzel
    • 1
    • 2
    • 3
  • J. Terry Ernest
    • 1
    • 2
    • 3
  1. 1.Department of Chemical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of MedicineAalborg Regional HospitalAalborgDenmark
  3. 3.Department of OphthalmologyUniversity of Illinois Eye and Ear InfirmaryChicagoUSA

Personalised recommendations