Metabolic Effects of Lowering Oxygen Tension In Vivo

  • David F. Wilson
  • Maria Erecinska
  • Ian A. Silver
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 159)


The delivery of oxygen to tissue is a highly regulated process which requires the existence of a tissue oxygen sensing mechanism. This sensor must be able to measure accurately the oxygen tension in each localized region of tissue and then transmit this information to the point of the control system which regulates the resistance of the appropriate blood vessels. Approximately 95% of the oxygen consumed by most tissues is utilized for mitochondrial oxidative phosphorylation through reaction with cytochrome c oxidase and it would be reasonable to assume that O2 delivery is regulated primarily to maintain this critical metabolic function. The question arises, is mitochondrial oxidative phosphorylation itself the oxygen sensor?


Respiratory Rate Oxygen Tension Turnover Number Mitochondrial Oxidative Phosphorylation Lowering Oxygen Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holian, A., Owen, C. S. and Wilson, D. F. (1977) Arch. Biochim. Biophys. 181, 164–171.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilson, D. F., Owen, C. S. and Holian, A. (1977) Arch. Biochem. Biophys. 182, 749–762.PubMedCrossRefGoogle Scholar
  3. 3.
    Erecinska, M., W lson, D. F. and Nishiki, K. (1978) Amer. J. Physiol. 234 (3), C82 - C89.Google Scholar
  4. 4.
    Wilson, D. F., Erecinska, M., Drown, C. and Silver. I. A. (1979) Arch. Biochem. Biophys. 195, 485–493.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilson, D. F., Owen, C. S. and Erecinska, M. (1979) Arch. Biochem. Biophys. 195, 494–504.PubMedCrossRefGoogle Scholar
  6. 6.
    Erecinska, M., Veech, R. L. and Wilson, D. F. (1974) Arch. Biochim. Biophys. 160, 412–421.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson, D. F., Stubbs, M., Veech, R. L., Erecinska, M. and Krebs, H. A. (1974) Biochim. J. 140, 57–64.Google Scholar
  8. 8.
    Hassinen, I. E. and Hiltunen, K. (1975) Biochim. Biophys. Acta 408, 319–330.PubMedCrossRefGoogle Scholar
  9. 9.
    Oshino, N., Sugano, T., Oshino, R. and Chance, B. (1974) Biochim Biophys. Acta 368, 298–310.Google Scholar
  10. 10.
    Baender, A. and Kiesse, M. (1955) Arch. Exp. Pathol. Pharmakol 244, 312–321.Google Scholar
  11. 11.
    Degn, H. and Wohlrab, H. (1971) Biochim. Biophys. Acta 245, 347–355.PubMedCrossRefGoogle Scholar
  12. 12.
    Lonymuir, I. S. (1957) Biochim. J. 65, 378–382.Google Scholar
  13. 13.
    Peterson, L. C., Nicholls, P. and Degn, H. (1974) Biochim. J. 142, 247–252.Google Scholar
  14. 14.
    Jones, D. P. and Mason, H. S. (1978) J. Biol. Chem. 253, 4874–4880.Google Scholar
  15. 15.
    Chance, B. (1976) Circulation Research 38, 131–138.CrossRefGoogle Scholar
  16. 16.
    Tamura, M., Oshino, N., Chance, B. and Silver, I. A. (1978) Arch. Biochem. Biophys. 191, 8–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Sies, H. (1978) Adv. Exp. Med. and Biol. 94, 561–566.CrossRefGoogle Scholar
  18. 18.
    Schneiderman, G. and Goldstick, T. K. (1976) Adv. Exp. Med. and Biol. 75, 9–16.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • David F. Wilson
    • 1
    • 2
  • Maria Erecinska
    • 1
    • 2
  • Ian A. Silver
    • 1
    • 2
  1. 1.Department of Biochemistry & BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of PathologyUniversity of BristolBristolEngland

Personalised recommendations