Concomitant Reduction in Uterine Blood Flow and Intrauterine Oxygen Tension in the Rat Following Nicotine Administration

  • J. A. Mitchell
  • R. E. Hammer
  • H. Goldman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 159)


It is well established that cirgarette smoking adversely affects pregnancy (see: Weathersbee, 1980a). Many of the deleterious actions of tobacco use during pregnancy are thought to result from nicotine, the principal alkaloid of tobacco. Nicotine exerts diverse effects on the endocrine system, thereby influencing the initiation, course and outcome of pregnancy. In addition to modifying gonadotropin secretion (Blake et al., 1972; Yoshinaga et al., 1979), the alkaloid evokes the release of catecholamines (Resnik et al., 1979) which in turn constricts the uterine vasculature (Anderson et al., 1977) and alters the intrauterine environment (Hammer et al., 1981). Indeed, inhalation of cigrarette smoke produces transient fetal hypoxia (Manning and Feyerabend, 1976). While such events in late pregnancy may impair fetal well-being, pregnancy wastage occurs very frequently during the peri-implantation period (see: Weathersbee 1980b). Though unattached to the uterus, the conceptus nevertheless grows at a rapid rate and its metabolic needs proceed pari passu as the time for implantation approaches. Such increased metabolic demands, prior to the establishment of sufficient blastocystuterine contact, render the conceptus particularly vulnerable to suboptimal supplies of oxygen and other metabolic substrates. In the rat for example, administration of nicotine during early pregnancy suppresses conceptus growth (Hammier et al., 1981), impairs uterine decidualization (Card and Mitchell, 1978), and retards implantation (Card and Mitchell, 1979). Since the process of nidation is dependent on a number of vascular-related events, the following study was undertaken to determine the relationship between uterine blood flow and the availability of oxygen within the uterus and the effects of nicotine on such vascular-dependent phenomena as blood flow and capillary permeability at the implantation site.


Implantation Site Evans Blue Nicotine Administration Nicotine Treatment Uterine Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adham, N. and Schenk, E. Am. J. Obstet. Gynec. 104, 508, 1969.Google Scholar
  2. Anderson, S., Still, J. and Greiss, F. Am. J. Obstet. Gynec. 129, 293, 1977.Google Scholar
  3. Bacsich, P. and Wyburn, G. Trans. Roy. Soc. Edin. 60, 79, 1939/40.Google Scholar
  4. Bartelmez, G. Carnegie Contrib. Embryol. No. 249, 155, 1957.Google Scholar
  5. Blake, C., Scaramuzzi, R., Norman, R., Kanematsu, S. and Sawyer, C Endocrinology 9, 1253, 1972.CrossRefGoogle Scholar
  6. Boeing, B. G. In: “Conference on Physiological Mechanisms Concerned with Conception”. Pergamon Press, New York, pp. 321, 1963.Google Scholar
  7. Card, J. and Mitchell, J. A. Biol. Reprod. 19, 325, 1978.CrossRefGoogle Scholar
  8. Card, J. and Mitchell, J. A. Biol. Reprod. 20, 532, 1979.PubMedCrossRefGoogle Scholar
  9. Garnis, D. and Mitchell, J. A. Biol. Reprod. 21, 149, 1979.CrossRefGoogle Scholar
  10. Hammer, R. E. and Mitchell, J. A. Proc. Soc. exp. Biol. Med. 162, 333, 1979.Google Scholar
  11. Hammer, R. E., Goldman, H. and Mitchell, J. A. J. Reprod. Fertil, 63, 163, 1981.CrossRefGoogle Scholar
  12. Harmer, R. E., Mitchell, J. A. and Goldman, H. In “Cellular and Molecular aspects of Implantation”. S. Glasser andGoogle Scholar
  13. D. Bullock, eds., Plenum Press, New York, p. 439, 1981c. Harada, M., Takeuchi, M., Fukao, T. and Katagiri. J Pharm. Pharmac. 23, 218, 1971.Google Scholar
  14. His, W. Arch. Anat., 1897.Google Scholar
  15. Manning, F. and Feyerabend, C. Br. J. Obstet. Gynaecol. 83, 262, 1976.Google Scholar
  16. Mitchell, J. A. and Yochim, J. Endocrinology 83, 691, 1968.PubMedCrossRefGoogle Scholar
  17. Mitchell, J. A. and Yochim, J. Endocrinology 83, 701, 1968.PubMedCrossRefGoogle Scholar
  18. Phelps, D. Am. J. Anat. 79, 167, 1946.CrossRefGoogle Scholar
  19. Psychoyos, A. In “Handbook of Physiology”. R. O. Graep and E. G. Astwood, eds. Williams and Wilkins, Philadelphia, p. 187, 1973.Google Scholar
  20. Quigley, M., Sheehan, K., Wilkes, M. and Yew, S. Am. J. Obstet. Gynec. 133, 685, 1979.Google Scholar
  21. Resnik, R., Brink, G. and Wilkes, M. J. Clin. Invest. 63, 1133, 1979.CrossRefGoogle Scholar
  22. Russell, M., Wilson, C., Patel, F., Feyerabend, C. and Cole, P. Brit. med. J. 2, 414, 1975.PubMedCrossRefGoogle Scholar
  23. Sapirstein, L. A. Am. J. Physiol. 193, 161, 1958.Google Scholar
  24. Weathersbee, P. J. Reprod. Med. 25, 243, 1980a.Google Scholar
  25. Weathersbee, P. J. Reprod. Med. 25, 315, 1980a.Google Scholar
  26. Yochim, J. M. and Mitchell, J. A. Endocrinology 83, 706, 1968.CrossRefGoogle Scholar
  27. Yochim, J. M. Biol. Reprod. 12, 106, 1975.PubMedCrossRefGoogle Scholar
  28. Yoshinaga, K., Rice, C., Krenn, J. and Pilot, R. Biol. Reprod. 20, 294, 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. A. Mitchell
    • 1
  • R. E. Hammer
    • 1
  • H. Goldman
    • 1
  1. 1.Departments of Anatomy and PharmacologyWayne State University, School of MedicineDetroitUSA

Personalised recommendations