Advertisement

Delayed Recovery Following Hypothermic Arrest in Rabbit Myocardium

  • R. Leighton Fisk
  • Eric J. Guilbeau
  • Steven J. Edgar
  • Anita J. Switzer
  • Lisa K. Moore
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 159)

Abstract

The purpose of this investigation was to determine the relationship between the duration of myocardial ischemia at 15°C and the time required for the myocardium to recover maximum contractile function following the ischemia. The isolated blood perfused rabbit heart was used as a model of myocardial ischemia.

Hearts frau 22 New Zealand white rabbits were divided into four groups. In Group I seven hearts were subjected to 15 minutes of ischemia at 15°C. In Group II five hearts were subjected to 30 minutes of ischemia at 15°C. In Groups III and IV the ischemia time was extended to 60 and 120 minutes, respectively. Following the ischemia each heart was reperfused at normothermia and papillary muscle contractility was measured and used as an index of myocardial recovery.

Hearts in Group I recovered their maximum contractile function after an average of 22.5 minutes. Those in Groups II, III, and IV were fully recovered after 31.7, 38.2, and 45.5 minutes, respectively. The study indicates that the time required for the maximum recovery of myocardial contractility following myocardial ischemia increases at a decreasing rate with an increase in the duration of the ischemia at 15°C.

Keywords

Papillary Muscle Zealand White Rabbit Myocardial Recovery Isolate Rabbit Heart Perfusion Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angell, W. W., Rikkers, L., Dong, E. Organ Viability with Hypothermia. Journal Thoracic Cardiovascular Surgery 58: 619, 1969Google Scholar
  2. 2.
    Angell, W. W., Rikkers, L., Dong, E., and Shumway, N. E. Organ viability with hypothermia. J. Thorac Cardiovasc Surg. 58: 619, 1969.PubMedGoogle Scholar
  3. 3.
    Apstein, C. S., Deckelbaum, L., Mueller, M., Hagopian, L., and W. B. Hood. Graded Global Ischemia and Reperfusion: Cardiac Function and Lactate Metabolism. Circulation 55: 864–872, 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Engelman, R. M., Chandra, R., Baumann, F. G., and Goldman, R. A. Myocardial reperfusion, a cause of ischemic injury during cardiopulmonary bypass. Surgery 80: 266, 1976.Google Scholar
  5. 5.
    Guilbeau, E. J., Fisk, R. L., Gordon, J. P., Edga, S. J., Switzer, A. J., and Moore, L. K. Improved isolated heart contractility with activated carbon hemoperfusion. Trans Am Soc Artif Intern Organs Vol.)XVI: 144, 1980.Google Scholar
  6. 6.
    Hearse, D. J. Oxygen deprivation and early myocardial contractile failure: A reassessment of the possible role of adenosine triphosphate. Am J. Cardiol 44: 1115, 1979.PubMedCrossRefGoogle Scholar
  7. 7.
    Hess, M. L., Barnhart, G. R., Crute, S., Komwatana, P., Krause, S. and Greenfield, L. J. Mechanical and biochemical effects of transient myocardial ischemia. J. Surg. Res 26: 175, 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Ino, T., Wakabayashi, A., Guilmette, E., Shinto, R. A., and Connolly, J. E. Effect of Hypothermic Anoxic Cardioplegia on Myocardial Contractility. The Annals of Thoracic Surgery 22: 25–29, 1976.CrossRefGoogle Scholar
  9. 9.
    Jennings, R. B. Relationship of accute ischemia to functional defects and irreversability. Circulation 53 (Suppl I): 26, 1976.Google Scholar
  10. 10.
    Jennings, R. B. and Ganote, C. E. Structural Changes in Myocardium During Acute Ischemia. Circulation Research Supplement III 34 & 35: 156–168, 1978.Google Scholar
  11. 11.
    Katz, A. M. Effect of ischemia on the contractile process of heart muscle. Am. J. Cardiol. 32: 456, 1973.CrossRefGoogle Scholar
  12. 12.
    Katz, A. M. and Hecht, H. H. The early “pump” failure of the ischenic heart. Am. J. Med 47: 497, 1969.PubMedCrossRefGoogle Scholar
  13. 13.
    Malong, J. V., and Nelson, R. L. Myocardial preservation during cardiopulmonary bypass: An overview. J. Thorac Cardiovasc Surg. 68: 101, 1974.Google Scholar
  14. 14.
    McCallister, L. P., Trapukdi, S., and Neely, J. R. Morphometric observations on the effects of ischemia in the isolated pprfused rat heart. J. Mol. Cell Cardiol 11: 619, 1979.CrossRefGoogle Scholar
  15. 15.
    Reibel, and Rovetto Myocardial ATP Snynthesis and Mechanical Function Following Oxygen Deficiency. American Journal of Physiology 234: H620–H624, 1978.Google Scholar
  16. 16.
    Schaper, J., Hehrlein, F., Schlepper, M., and Theidmann, K. U. Ultrastructural alterations during ischemia and reperfusion in human hearts during cardiac surgery. J. Mol Cell Cardiol 9: 175, 1977.PubMedCrossRefGoogle Scholar
  17. 17.
    Sharma, G. P., Varley, K. G., Kim, S. W., Barwinsky, J., Cohen, M., and Dhalla, N. S. Alterations in energy metabolism and ultrastructure upon reperfusion of the ischenic myocardium after coronary occlusion. Am. J. Cardiol 36: 234, 1975.CrossRefGoogle Scholar
  18. 18.
    Shen, A. C. and Jennings, R. B. Myocardial Calcium and magnesium in acute ischemic injury. Am J. Pathol 67: 417, 1972.PubMedGoogle Scholar
  19. 19.
    Steenberger, C., Deleeuw, G., Rich, T. and Williamson, J. R. Effects of adicosis and ischemia on contractility and intracellular pH of rat heart. Circ Res 41: 849, 1977.CrossRefGoogle Scholar
  20. 20.
    Trump, B. F., Mergner, W. J., Kahang, M. W. and Saladino, A. J. Studies on the subcellular pathophysiology of ischemia. Circulation 53 (Suppl I): 14, 1976.Google Scholar
  21. 21.
    Tsien, R. W. Possible effect of hydrogen ions in ischEnic myocardium. Circulation 53 (Suppl I): 14, 1976.Google Scholar
  22. 22.
    Vary, C. T., Angelakos, E. T. and Schaffer, S. W. Relationship Between Adenine Nucleotide Metabolism and Irreversible Ischemic Tissue Damage in Isolated Perfused Rat Heart. Circulation ResPArch 45: 218–219, 1979.CrossRefGoogle Scholar
  23. 23.
    Wakabayashi, A., Mihranian, M., Guilmette, E., Ito, Y. and Connolly, J. E. Functional Evaluation of Normothermic Intermittent Coronary Perfusion. The Journal of Thoracic and Cardiovascular Surgery 75: 20–24, 1978.Google Scholar
  24. 24.
    Whalen, D. A., Hamilton, D. G., Ganote, C. E. and Jennings, R. B. Effect of a transient period of ischemia on myocardial cells I. Effects on cell nolume regulation. Am J. Pathol 74: 381, 1974.PubMedGoogle Scholar
  25. 25.
    Williamson, J. R., Schaffer, S. W., Ford, C., and Safer, B. Contribution of tissue acidosis to ischenic injury in the perfused rat heart. Circulation 53 (Suppl I): 3, 1976.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. Leighton Fisk
    • 1
    • 2
  • Eric J. Guilbeau
    • 1
    • 2
  • Steven J. Edgar
    • 1
    • 2
  • Anita J. Switzer
    • 1
    • 2
  • Lisa K. Moore
    • 1
    • 2
  1. 1.St. Luke’s Hospital Medical CenterPhoenixUSA
  2. 2.Department of Chemical and BioengineeringArizona State UniversityTempeUSA

Personalised recommendations