Advertisement

Oxygen Indicator Dilution Curves of the Canine Cerebral Circulation

  • P. Grieb
  • R. E. Forster
  • P. C. Pape
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 159)

Abstract

Indicator-dilution methodology is a useful tool in studies of transcapillary exchange (6,10), but oxygen isotopes have seldom been used in such studies, because they require non-standard laboratory techniques. Of the two isotopes of oxygen currently used in physiological research, positron-emitting oxygen-15 is not suitable for the indicator-dilution technique, because one cannot distinguish between signal originating from unmetabolized 15O2, and that from metabolically-formed H2 15O molecules (28). The other is the stable isotope oxygen-18, which can be detected by mass spectrometric techniques. Tb our knowledge, there are only two preliminary reports of stable oxygen tracer dilution curves. Chinard et al, (8) published a 18O2 dilution curve of kidney, with 51Crlabelled red blood cells (Cr-rbc) as the reference indicator. In that experiment, the labelled oxygen curve preceeded the reference curve, which was attributed to the existence of a diffusional shunt in kidney. Forster et al, (13) obtained 18O2 dilution curves of skinned canine hind limb, with indocyanine green as the reference tracer. In these experiments, labelled oxygen curves lagged behind the reference.

Keywords

Cerebral Blood Volume Reference Curve Dilution Curve Oxygen Distribution Reference Indicator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baines, A. D., Gottschalk, C. W. and Lasitter, W. E., Microinjection study of p-aminohippurate excretion by rat kidneys. Amer. J. Physiol. 214:703–709, 1968.Google Scholar
  2. 2.
    Bassingthwaighte, J. B., A concurrent model for extraction during transcapillary passage. Circ. Res. 35: 483–503, 1974.PubMedCrossRefGoogle Scholar
  3. 3.
    Bassingthwaighte, J. B., Knopp, T. J., and Hazelrig, J. B., A concurrent flow model of capillary-tissue exchanges. In: Capillary Permeability, edited by Crone, C., and Lassen, N. A., Alfred Benzon Symposium III, Munksgaard: Copenhagen, 1970, p. 60–81.Google Scholar
  4. 4.
    Bassingthwaighte, J. B., Levin, M., Knapp, T. J., and Yipintsoi, T., Myocardial flow heterogeneity and diffusional shunting. In; Oxygen Transport to Tissue, edited by Kovach, A. G. B., Dora, E., Kessler, M. and Silver, I. A., Adv. Physiol. Sci. 25:59–66, 1981.Google Scholar
  5. 5.
    Bassingthwaighte, J. B., Strandell, T., Yipintsoi, T., Flow limited washout of diffusible solutes from the heart. In: Capillary Permeability, edited by Crone, C., and Lassen, N. A., Alfred Benzon Symposium II, Munksgaard: Copenhagen, 1970, pp 580–585.Google Scholar
  6. 6.
    Bassingthwaighte, J. B., and Yipintsoi, T., Organ blood flow, wash-in, washout and clearance of nutrients and metabolites. Mayo Clin. Proc. 49: 248–255, 1974.Google Scholar
  7. 7.
    Chinard, F. P., Intrarenal volumes of distribution of sane extracellular tracers. Theoretical considerations and possible practical applications. In: Compartments, Pools, and Spaces, edited by Bergner, P. E., and Lushbaugh, C. C. U.S. Atomic Energy Commission, Oak Ridge, Tenn., 1967, p. 32–44.Google Scholar
  8. 8.
    Chinard, F. P., Effros, R., Perl, W., and Silverman, M., Organ vascular and extravascular compartments in vivo. In: Compartments, Pools, and Spaces, edited by P.-E. Bergner and C. C. Lushbaugh, U. S. Atomic Energy Commission, Oak Ridge, Tenn., 1967, p. 381–422.Google Scholar
  9. 9.
    Crank, J. Diffusion with rapid irreversible immobilization. Trans Faraday Soc. 53: 1083–1091, 1957.CrossRefGoogle Scholar
  10. 10.
    Crone, C. Capillary permeability–techniques and problems. In: Capillary Permeabiltiy, edited by C. Conre and N. A. Lassen, Alfred Benzon Symposium II, Munksgaard: Copenhagen, 1970, p. 15–31.Google Scholar
  11. 11.
    Crone, C., and Thompson, A. M. Comparative studies of capillary permeability in brain and muscle. Acta Physiol. Scand. 87: 252–260, 1973.Google Scholar
  12. 12.
    Dick, D. A. T. The rate of diffusion of water in the protoplasm of living cells. Exp. Cell Res. 17: 5–12, 1959.PubMedCrossRefGoogle Scholar
  13. 13.
    Forster, R. E., Goodwin, C. W. Itada, N. A new approach to the experimental measurement of mean tissue PO2. In: Oxygen Transport to Tissue, II, edited by J. Grote, D. Reneau, and G. Thews. Adv. Exp. Med. Biol. 75:183–190, 1976.Google Scholar
  14. 14.
    Friis, M. L., Paulson, O. B., and Hertz, M. M. Carbon dioxide permeability of the blood-brain barrier in man. The effect of acetazolamide. Microvasc..Res. 20: 71–80, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Goresky, C. A., Ziegler, W. H. and Bach, G. G. C.pillary exchange modelling: barrier-limited and flow-limited distribution. Circ. Res. 27: 739–764, 1970.Google Scholar
  16. 16.
    Hellums, J. D. The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue. Microvasc. Res. 13: 131–136, 1977.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson, P. C. Red cell separation in the capillary network. Amer. J. Physiol. 221: 91–104, 1971.Google Scholar
  18. 18.
    Kuhl, D. E., Reivich, M. Alavi, A., Nyary, I and Staum, M. M. Local cerPhral blood volume determined by three-dimensional reconstruction of radionuclide scan data. Circ. Res. 36: 610–619, 1975.PubMedCrossRefGoogle Scholar
  19. 19.
    Leonard, E. F., and Jorgensen, S. B. The analysis of convection and diffusion in capillary beds. Ann. Rev. Biophys. Bioeng. 3: 293–339, 1974.CrossRefGoogle Scholar
  20. 20.
    Murray, J. E., and Plioplys, A. Indicator-dilution technique for study blood-to-brain solute passage in the rat. J. Appl. Physiol. 33: 681–683, 1972.PubMedGoogle Scholar
  21. 21.
    Perl, W., and Chinard, F. P. A convection-diffusion model of indicator transport through an organ. Circ. Res. 22: 273–298, 1968.PubMedCrossRefGoogle Scholar
  22. 22.
    Raichle M. E., and Larson, K. B. The significance of NH3NH4 equilibrium on the passage of 13N-ammonia from blood to brain. A new regional residue detection model. Circ. Res. 48: 913–946, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Rasio, E. A., and Goresky, C. A. Capillary limitation of oxygen distribution in the isolated rate mirabile of the eel (Anguilla Anguilla). Circ. Res. 44: 498–503, 1979.Google Scholar
  24. 24.
    Rose, C. P., Goresky, C. A. and Bach, G. G. The capillary and sarcolemmal barriers in the heart. An exploration of labelled water permeability. Circ. Res. 41: 515–533, 1977.PubMedCrossRefGoogle Scholar
  25. 25.
    Roughton, F. J. W. Diffusion through membranes followed by diffusion with rapid irreversible immobilization in another medium. Trans. Faraday Soc. 56: 1085–1094, 1960.CrossRefGoogle Scholar
  26. 26.
    Sklar, F. H., Burke, E. F. Jr., and Langfitt, T. Cerebral blood volume: values obtained with 51Cr-labelled red blood cells and RISA. J. Appl. Physiol. 24: 79–82, 1968.PubMedGoogle Scholar
  27. 27.
    Taylor, G. I. The dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London, Ser. A 219: 186–203, 1953.CrossRefGoogle Scholar
  28. 28.
    Ter-Pogossian, M. M., Eichling, J. O., Davis, D. O. and Welch, M. J. The measure in vivo of regional cerehral oxygen utilization by means of oxyhemoglobin labelled with radioactive oxygen-15. J. Clin. Invest. 49: 381–391, 1970.PubMedCrossRefGoogle Scholar
  29. 29.
    Thews, G. Die Sauerstoffdiffusion im Gehirn. Pfluegers Arch. 271: 197–226, 1960.CrossRefGoogle Scholar
  30. 30.
    Weil, A.,Zeiss, F. R. and Clevelnad, D. A. The determination of the amount of blood in the central nervous system after injection of hypertonic solutions. Am. J. Physiol. 98: 363–367, 1931.Google Scholar
  31. 31.
    Zierler, K. L. Theory of the use of indicators to measure blood flow and extracellular volume and calculations of transcapillary movement of tracers. Circ. Res. 12: 464471, 1963.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • P. Grieb
    • 1
  • R. E. Forster
    • 1
  • P. C. Pape
    • 1
  1. 1.Department of PhysiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations