FT-IR Spectroscopic Studies on the Deformation of Polymers by Means of Computerized Instrumentation

  • Kurt Holland-Moritz
Part of the Polymer Science and Technology book series (POLS, volume 36)


In recent years the range of applicability of IR spectroscopy to chemical and physical problems has enromously expanded by the revival of Fourier transform infrared (FT-IP.) spectroscopy. The most frequently used basic optical component of FT-IR instruments, the Michelson interferometer, has been known for almost a century, It was A.A.Michelson [1] who could postulate in 1891 from the interference fringes generated by his interferometer, that the red Balmer line in the hydrogen spectrum was in reality a doublet. As early as 1892, Lord Rayleigh [2] recognized that the interferogratn (intensity as function of optical path difference) could be related to the frequency of the radiation passing through the interferometer (intensity as funtion of frequency) by a mathematical operation called Fourier transformation. However, it was beyond the mathematical and technical possibilities of that time to verify this assumption. Because of these difficulties interferometric measurements were not applied to a large extent. It was nearly half a century later in 1949 when P.Fellgett [3] used a Michelson interferometer in his astronomical observations to analyze weak radiation from outer space. He actually performed a numerical Fourier transformation to calculate the frequency distribution of the incident radiation. The applicability of the interferometric technique has been enormously increased after the introduction of the Cooley-Tukey algorithm for fast Fourier transformation [4] in 1966. The rapid development of digital computers greatly facilitated the mathematical procedures necessary for the collection and correction of the experimental data (interferogram) and enormously decreased the actual measure time and the time for the Fourier transformation. This progress in the field of digital eletronics together with the well-known advantages of interferometric measurements has opened new horizons in infrared spectroscopy.


Polymer Film Optical Path Difference Parallel Polarization Perpendicular Polarization Dichroic Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Michelson, Phil. Mag., 31 (1891).Google Scholar
  2. 2.
    Lord Rayleigh, Phil. Mag. Ser. 3, 409 (1892).Google Scholar
  3. 3.
    P.B. Fellget, in Aspen International Conferene on Fourier Spetrosopy 1970, V.A. Vanasse Stair, A.T., Baker, D.J., Eds., AFCRL-71–0019 (1970) p.139.Google Scholar
  4. 4.
    J.W. Cooley and J.W. Tukey, Math. Comput., 19, 297 (1965).CrossRefGoogle Scholar
  5. 5.
    H.W. Siesler and K. Holland-Moritz, Infrared and Raman Spectroscopy of Polymers, Marcel Dekker, New York (1980).Google Scholar
  6. 6.
    K. Holland-Moritz, W. Stach and I. Holland-Moritz, J. Mol. Struc., 60, 1 (1980).CrossRefGoogle Scholar
  7. 7.
    K. Holland-Moritz, I. Holland-Moritz and K. van Werden, Colloid Polym. Sci., 259, 156 (1981).CrossRefGoogle Scholar
  8. 8.
    K. Holland-Moritz, W. Stach and I. Holland-Moritz, Progr. Colloid Polym. Sci., 67, 161 (1980).CrossRefGoogle Scholar
  9. 9.
    A. Peterlin, J. Mat. Sci., 6,, 490 (1971).Google Scholar
  10. 10.
    K. Kobayashi, cited in P.H.Geil, Polymer Single Crystals, Wiley, New York (1963) p. 473.Google Scholar
  11. 11.
    B. Heise, H.-G. Kilian and W. Wulf, Progr. 61, 143 (1980).Google Scholar
  12. 12.
    H.G. Kilian, Makromolekulares Kolloquium, Freiburg (1980).Google Scholar
  13. 13.
    D.P. Pope and A. Keller, J. Polym. Sci. Polym. Phys. 13, 533 (1975).Google Scholar
  14. 14.
    S. Krimm, Adv. Polym. Sci., 2, 51 (1960).CrossRefGoogle Scholar
  15. 15.
    P.C. Painter, J. Havens, N.W. Hart and J.L. Koenig, Sci. Polym. Phys. Ed., 1/, 1257 (1977). J. Polym.Google Scholar
  16. 16.
    Y. Kikuchi and S. Krimm, J. Macromol. Sci. Phys., 64, 461 (1970).Google Scholar
  17. 17.
    Z. Mencik, J. Polyin. Sci. Polym. Phys. Ed., 11, 2173 (1975).Google Scholar
  18. 18.
    M. Yokouchi, K. Sakakibara, Y. Chatani, M. Tadokoro, T. Tanaka and K. Yoda, Macromelecules, 9, 266 (1976).CrossRefGoogle Scholar
  19. 19.
    R. Jakeways, T. Smith, I.M. Ward and M.A. Wilding, J. Polym. Sci. Polym. Lett. Ed., 14, 41 (1976).CrossRefGoogle Scholar
  20. 20.
    J.H. Hall and M.G. Pass, Polymer, 1, 807 (1976).CrossRefGoogle Scholar
  21. 21.
    I.J. Desborough and J.H. Hall, Polymer, 18, 825 (1977).CrossRefGoogle Scholar
  22. 22.
    M.G. Brereton, G.R. Davis, R. Jakeways, T. Smith and I.M. Ward, Polymer, 12, 17 (1978).CrossRefGoogle Scholar
  23. 23.
    U. Alter and R. Bonart, Colloid Polym. Sci., 258, 332 (1980).CrossRefGoogle Scholar
  24. 24.
    B.D. Stamnbaugh, J.L. Koenig and J.B. Lando, J. Polym. Sci. Polym. Phys. Ed., 11, 1053 (1979).Google Scholar
  25. 25.
    K. Tashiro, Y. Nakai, M. Kobayashi and H. Tadokoro, Macromolecules, 11, 137 (1980).CrossRefGoogle Scholar
  26. 26.
    B.D. Stammbaugh, J.L. Koenig and J.B. Lando, J. Polym. Sci. Polym. Lett. Ed., 11, 299 (1977).Google Scholar
  27. 27.
    I.M. Ward and M.A. Wilding, Polymer, 18, 327 (1977).CrossRefGoogle Scholar
  28. 28.
    B.D. Stammbaugh, J.B. Lando and J.L. Koenig, J. Polym. Sci. Polym. Phys. Ed., 1, 1063 (1979).Google Scholar
  29. 29.
    H.W. Siesler, J. Polym. Sci. Polym. Lett. Ed., 17, 453 (1979).Google Scholar
  30. 30.
    K. Holland-Moritz, W. Stach and I. Holland-Moritz, Progr. Colloid Polym. Sci., 61, 161 (1980).CrossRefGoogle Scholar
  31. 31.
    W. Stach and K. Holland-Moritz, J. Mol. Structure, 60, 49 (1980).CrossRefGoogle Scholar
  32. 32.
    K. Holland-Moritz and H.W. Siesler, Polym. Bull., 4, 165 (1981).CrossRefGoogle Scholar
  33. 33.
    W. Stach, Ph.D. Thesis, University of Cologne, Cologne (1982).Google Scholar
  34. 34.
    H.W. Siesler, Makrocool. Chem., 180, 2261 (1980).CrossRefGoogle Scholar
  35. 35.
    W. Stach and K. Holland-Moritz, J. Mol. Structure, (in press).Google Scholar
  36. 36.
    K. Holland-Moritz (in preparation).Google Scholar
  37. 37.
    T. Tanaka, Y. Chatani and H. Tadokoro, J. Polym. Sci. Polym. Phys. Ed., 12, 515 (1974).Google Scholar
  38. 38.
    K. Holland-Moritz and W. Stach (in preparation).Google Scholar
  39. 39.
    K. Holland-Moritz,Proceedings of the 5th European Symposium on Polymer Spectroscopy, Verlag Chemie, Weinheim (1979) p. 93.Google Scholar
  40. 40.
    K. Holland-Moritz and H.W. Siesler, Appl. Spectrosc. Rev., 11, 1 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Kurt Holland-Moritz
    • 1
    • 2
  1. 1.Institute for Physical ChemistryUniversity of CologneGermany
  2. 2.Heyden DatasystemsCologneWest Germany

Personalised recommendations