Fourier Transform Infrared Vibrational Circular Dichroism in the Carbonyl Stretching Region of Polypeptides and Urethane Amino Acid Derivatives

  • Laurence A. Nafie
  • Elmer D. Lipp
  • Anita Chernovitz
  • Germana Paterlini
Part of the Polymer Science and Technology book series (POLS, volume 36)


Fourier transform vibrational circular dichroism (FT-IR VCD) and ordinary FT-IR absorption spectra are presented for the polypeptide, poly(ε-CBZ-L-lysine), and the urethane amino acid derivative, N-t-Boc-L-alanine, in the carbonyl stretching region. The assignment of the spectra are discussed and two basic mechanisms for VCD intensity are described and applied to the VCD spectra presented. The stereosensitivity of VCD spectra to molecular structure in these and other molecules is illustrated and the need for the establishment of quantitative structural relationships is stressed.


Couple Oscillator Nuclear Motion Vibrational Circular Dichroism Vibrational Circular Dichroism Spectrum Acid Carbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.a)
    L.A. Nafie and M. Diem, Acc. Chem. Res., 12, 296 (1976).CrossRefGoogle Scholar
  2. b).
    P.J. Stephens and R. Clark, in ‘Optical Activity and Chiral Discrimination’, S.F. Mason, Ed., D.Reidel, Dordrecht (1979) p. 263.Google Scholar
  3. c).
    T.A. Keiderling, Appl. Spectrosc. Rev., 17, 189 (1981).CrossRefGoogle Scholar
  4. d).
    L.A. Nafie in ‘Vibrational Spectra and Structure’, Vol. 10, J.R. Durig, Ed., Elsevier, Amsterdam (1981) p. 153.Google Scholar
  5. e).
    L.A. Nafie in ‘Advances in Infrared and Raman Spectroscopy’, Vol.11, R.J.H. Clark and R.E. Fester, Eds., Wiley-Heyden, Chichester (1984) p. 49.Google Scholar
  6. f).
    P.L. Polavarapu in ‘Vibrational Spectra and Structure’, Vol.13, J.R. Durig, Ed., Elsevier, Amsterdam (1984) p. 103.Google Scholar
  7. 2.a)
    L.A. Nafie and M. Diem, Appl. Spectrosc., 33, 130 (1979).CrossRefGoogle Scholar
  8. b).
    L.A. Nafie, M. Diem and D.W. Vidrine, J. Am. Chem. Soc., 101, 496 (1979).CrossRefGoogle Scholar
  9. c).
    c) L.A. Nafie, E.D. Lipp and C.G. Zimba in ‘Proceedings of the 1981 Interfational Conference on Fourier Transform Infrared Spectroscopy ’, H. Sakai, Ed., SPIE, Bellingham (1981) p. 457.Google Scholar
  10. d).
    d) L.A. Nafie and D.W. Vidrine, in ‘Fourier Transform Infrared Spectroscopy’, Vol.3, J.R. Ferraro and L.J. Basile, Eds., Academic, New Y ork (1982) p. 83.Google Scholar
  11. 3.a)
    E.D. Lipp, C.G. Zimba and L.A. Nafie, Chem. Phys. Lett., 90, 1 (1982).CrossRefGoogle Scholar
  12. b).
    E.D. Lipp and L.A. Nafie, Appl. Spectrosc., 38, 20 (1984).CrossRefGoogle Scholar
  13. 4.
    E.D. Lipp and L.A. Nafie, Appl. Spectrsc., 38, 774 (1984).Google Scholar
  14. 5.
    G. Holzwarth and I. Chabay, J. Chem. Phys., 57, 1632 (1972).CrossRefGoogle Scholar
  15. b).
    T.R. Faulkner, Ph.D.Thesis, University of Minnesota, Minnesota (1976).Google Scholar
  16. c).
    H. Sugeta, C. Marcott, T.R. Faulkner, J. Overend and A. Moscowitz, Chem. Phys. Lett., Apt, 397 (1976).Google Scholar
  17. 6.a)
    J.A. Shellman, J. Chem. Phys., 58, 2882 (1973).CrossRefGoogle Scholar
  18. b).
    Ibid., 90, 343 (1974).Google Scholar
  19. c).
    C.W. Deutsche and A. Moscowitz, J. Chem. Phys., 49, 3257Google Scholar
  20. d).
    Ibid., 53, 2530 (1970).Google Scholar
  21. 7.a)
    L.A. Nafie and T.H. Walnut, Chem. Phys. Lett., 49, 441 (1977).CrossRefGoogle Scholar
  22. b).
    T.H. Walnut and L.A. Nafie, J. Chem. Phys., 67, 1501 (1977).CrossRefGoogle Scholar
  23. c).
    L.A. Nafie and P.L. Polavarapu, J. Chem. Phys., 75, 2935 (1981).CrossRefGoogle Scholar
  24. d).
    P.L. Polavarapu and L.A. Nafie, J. Chem. Phys., 75; 2945 (1981).CrossRefGoogle Scholar
  25. 8.
    S. Abbate, L. Laux, J. Overend and A. Moscowitz, J. Chem. Phys., 75, 3161 (1981).CrossRefGoogle Scholar
  26. 9.
    C.J. Barnett, A.F. Drake, R. Kuroda and S.F. Mason, Mo. Phys., 41, 455 (1980).CrossRefGoogle Scholar
  27. 10.a)
    a) L.D. Barron in Optical Activity and Chiral Discrimination, S.F. Mason, Ed., D.Reidel, Dordrecht (1979) p. 219.Google Scholar
  28. b).
    P.L. Polavarapu, Mol. Phys., 49, 645 (1983).CrossRefGoogle Scholar
  29. 11.a)
    L.A. Nafie and T.B. Freedman, J. Chem. Phys., 78, 7108 (1983).CrossRefGoogle Scholar
  30. b).
    L.A. Nafie, J. Chem. Phys., 79, 4950 (1983).CrossRefGoogle Scholar
  31. 12.a)
    R.D. Singh and T.A. Keiderling, Biopolymers, 20, 237 (1981).CrossRefGoogle Scholar
  32. b).
    B.B. Lal and L.A. Nafie, Biopolymers, 21, 2161 (1982).CrossRefGoogle Scholar
  33. c).
    A.C. Sen and T.A. Keiderling, Biopolymers, 23, 1519 (1984).CrossRefGoogle Scholar
  34. d).
    Ibid., 23, 1533 (1984).Google Scholar
  35. 13.
    E.D. Lipp and L.A. Nafie, Biopolymers, 24, 799 (1985).CrossRefGoogle Scholar
  36. 14.
    I. Tinoco, Rad. Res., 20, 133 (1963).CrossRefGoogle Scholar
  37. 15.a)
    L.A. Nafie, M.R. Oboodi and T.B. Freedman, J. Am. Chem. Soc., 105, 7499 (1983).CrossRefGoogle Scholar
  38. b).
    M.R. Oboodi, B.B. Lal, D.A. Young, T.B. Freedman and L.A. Nafie, J. Am. Chem. Soc., 107, 6205 (1985).CrossRefGoogle Scholar
  39. 16.
    G.R. Bird and E.R. Blout, J. Am. Chem. Soc., 81, 2499 (1959).CrossRefGoogle Scholar
  40. 17.
    L.A. Nafie, E.D. Lipp, A. Farrell and M.G. Paterlini, Polymer Preprints, 25, 145 (1984).Google Scholar
  41. 18.
    E. Benedetti, B. DiBlasio, V. Pavone, C. Pedone, C. Toniolo and G.M. Borova, Biopolymers, 20, 1635 (1981).CrossRefGoogle Scholar
  42. 19.
    V. Narayanan and T.A. Keiderling, J. Am. Chem. Soc., 105, 6406 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Laurence A. Nafie
    • 1
  • Elmer D. Lipp
    • 1
  • Anita Chernovitz
    • 1
  • Germana Paterlini
    • 1
  1. 1.Department of ChemistrySyracuse UniversitySyracuseUSA

Personalised recommendations