Advertisement

Fourier Transform Polarimetry

  • Jennifer A. Bardwell
  • Michael J. Dignam
Part of the Polymer Science and Technology book series (POLS, volume 36)

Abstract

Electromagnetic radiation propagates through homogeneous isotropic media without change in polarization state. Reflection or transmission through an interface at other than normal incidence, however, does result in a change of polarization state, as does propagation through anisotropic media. Ellipsometry is the art of measurement of the polarization state of fully polarized light, and hence of the measurement of the properties of materials and interfaces to transform fully polarized light. The information sought in the case of transmission through anisotropic materials is the differential dispersion and differential absorption spectra, while from reflection studies, most commonly it is the thickness and optical constants of one or more overlayers. In this paper, we address all of these in connection with Fourier transform UV-VIS and IR spectroscopy of polymers, but in addition, a section on emission spectra, which in general involves making measurements on partially polarized light, has been included, hence the choice of the more general term “polarimetry” over “ellipsometry”.

Keywords

Polarization State Beam Splitter Linear Polarizer Optical Constant Reflection Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a general-reference to optical equations see M. Born and E. Wolf, ‘Principles of Optics’, 2nd Ed. , Pergamon, London (1964). The sign conventions used here, however, are those suggested by R. H. Muller, Surf. Sci. , 16, 14 (1969).Google Scholar
  2. 2.
    R. C. Jones, J. Opt. Soc. Am., 31, 23 (1941).Google Scholar
  3. 3.
    M. J. Dignam and M. D. Baker, Appl. Spectrosc., 33, 186 (1981).CrossRefGoogle Scholar
  4. 4.
    M. J. Dignam, M. Moskovits and R. W. Stobie, Trans. Faraday Soc., 67, 3306 (1971).CrossRefGoogle Scholar
  5. 5.
    O. S. Heavens, ‘Optical Properties of Thin Solid Films’, Butter-worths, London (1955) p. 55.Google Scholar
  6. 6.
    M. J. Dignam and M. Moskovits, J. Chem. Soc., Faraday Trans. 2, 69, 56 (1973).CrossRefGoogle Scholar
  7. 7.
    R. W. Stobie, B. Rao and M. J. Dignam, Surf. Sci., 56, 334 (1976).CrossRefGoogle Scholar
  8. 8.
    W. J. Plieth and K. Naegele, Surf. Sci., 64, 484 (1977).CrossRefGoogle Scholar
  9. 9.
    C. J. F. Bottcher and P. Bordewijk, ‘Theory of Electric Polarization’, Vo1. II, 2nd Ed., Elsevier, New York (1978) p. 427.Google Scholar
  10. 10.
    J. Roth, B. Rao and M. J. Dignam, Trans. Faraday Soc., 71 (1975).Google Scholar
  11. 11.
    C. W. Peterson and B. W. Knight, J. Opt. Soc. Am., 63, 1238 (1978).CrossRefGoogle Scholar
  12. 12.
    F. W. King, J. Opt. Soc. Am., 68, 994 (1978).Google Scholar
  13. 13.
    R. J. Bell,’Introductory Fourier Transform Spectroscopy’, Academic, New York (1972) p. 157.Google Scholar
  14. 14.
    K. Naegele and W. J. Plieth, Surf. Sci., 61, 504 (1976).CrossRefGoogle Scholar
  15. 15.
    J. Zwinkels, canadian Research, Oct. 1983, 16.Google Scholar
  16. 16.
    D. B. Gibbs, B. Rao, R. A. Griffin and M. J. Dinam, J. Electrochem. Soc., 122, 1187 (1975).CrossRefGoogle Scholar
  17. 17.
    L. A. Nafie and M. Diem, Appl. Opt., 33, 180 (1979).Google Scholar
  18. 18.
    L. A. Nafie, E. D. Lipp and C. G. Zimba, P. -oc. SPIE, Fourier Transform Spectroscopy, 289, 457 (1981).Google Scholar
  19. 19.
    R. W. Stobie, B. Rao and M. J. Dignam, J. Opt. Soc. Am., 65, 25 (1975).CrossRefGoogle Scholar
  20. 20.
    R. W. Stobie, B. Rao and M. J. Dignam, Appl. Opt., 14, 199 (1975).Google Scholar
  21. 21.
    A. Roseler, Infrared Phys., 21, 349 (1981).CrossRefGoogle Scholar
  22. 22.
    A. Roseler, Infrared Phys., 24, 1 (1984).CrossRefGoogle Scholar
  23. 23.
    J. R. Birch, Proc. SPIE, Fourier Transform Spectroscopy, 289, 362 (1981).Google Scholar
  24. 24.
    J. R. Birch, J. D. Dromey and J. Lesurf, Infrared Phys., 21, 225 (1981).CrossRefGoogle Scholar
  25. 25.
    D. H. Martin, in Infrared and Millimeter Waves’, Vol. 6, K. J. Button, Ed. , Academic, New York (19í2) pp. 65–148.Google Scholar
  26. 26.
    D. H. Martin and E. Puplett, Infrared Phys., 10, 105 (1969).CrossRefGoogle Scholar
  27. 27.
    T. J. Parker, D. A. Ledsham and W. G. Chamber:, Infrared Phys., 18, 179 (1978); and D. A. Ledsham, W. G. Chambers and T. J. Parker, Infrared Phys., 16, 515 (1976).CrossRefGoogle Scholar
  28. 28.
    C. H. Burton and Y. Akimoto, Infrared Phys., 20, 115 (1980).CrossRefGoogle Scholar
  29. 29.
    K. Yoshihara, A. Kitade and T. Matsushila, J. Appl. Phys. Japan, 21, L206 (1982).CrossRefGoogle Scholar
  30. 30.
    F. Sugawara and H. Nagai, J. Appl. Ph’s. Japan, 18, 1659 (1979).CrossRefGoogle Scholar
  31. 31.
    D. K. Lambert and P. L. Richards, Appl. Ops, 17, 1595 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jennifer A. Bardwell
    • 1
  • Michael J. Dignam
    • 1
  1. 1.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations