Quantitative Analysis of Neat Polymeric Fibers by DRIFTS Using Optical Constant Data

  • R. T. Graf
  • J. L. Koenig
  • H. Ishida
Part of the Polymer Science and Technology book series (POLS, volume 36)


Infrared reflectance spectra were obtained of drawn and undrawn poly(ethylene terephthalate) (PET) fibers using a diffuse reflectance attachment. different fiber alignments with respect to the incident beam produced relative intensity changes for the drawn, but not the undrawn fiber spectra. The band positions in the fiber reflection spectra were shifted with respect to their positions in a transmission spectrum. The intensities of the weak bands and overtones was enhanced in the fiber reflectance spectra as compared to transmission spectra. reflection spectra were also obtained of drawn PET film. The film reflection spectra showed the same band shifts as the fiber reflectance spectra, but the overtone bands were not enhanced as in the fiber case. Using the optical constants measured from a solution-crystallized sample of PET, and a well-known equation from the statistical theory of diffuse reflectance, a fiber reflectance spectrum was calculated. This calculated spectrum agreed quite well with the experimental spectrum of undrawn PET fibers in band positions, relative intensities, and absolute intensities.


Reflectance Spectrum Diffuse Reflectance Optical Constant Diffuse Reflectance Spectrum Ethylene Terephthalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.C. Grieve and T.M. Kotowski, J. Forens. Sci. 22, 491 (1977).Google Scholar
  2. 2.
    W.O. Statton, J.L. Koenig, and M. Hannon, J. Appl. Phys., 41, 4290 (1970).CrossRefGoogle Scholar
  3. 3.
    O. Kirret, P. Koch, L. Lahe, G. Rajalo, and E. Kirjanen, Eesti. NSV Tead. Akad. Toim., Keem. 32, 163 (1983).Google Scholar
  4. 4.
    G.A. Tirpak and J.P. Sibilia, J. Appl. Polym. Sci. 11, 643 (1973).CrossRefGoogle Scholar
  5. 5.
    D.J. Carlsson, T. Suprunchuk, and D.M. Wiles, Text. Res. J., 47, 456 (1977).Google Scholar
  6. 6.
    J.P. Silibia, in “Surface Characteristics of Fibers and Textiles”, Part 1, M.J. Schick, Ed., (Marcel Dekker, New York (1975) chap. 8.Google Scholar
  7. 7.
    A.E. Tshmel, V.I. Vettegren, and V.M. Zolotarev, J. Macromol. Sci.-Phys. B21, 243 (1982).CrossRefGoogle Scholar
  8. 8.
    G. Gillberg and D. Kemp, J. Appl. Polym. Sci. 26, 2023 (1981).CrossRefGoogle Scholar
  9. 9.
    D.J. Carlsson, T. Suprunchuk, and D.M. Wiles, Can. Text. J., 87, 73 (1970).Google Scholar
  10. 10.
    M.P. Fuller and P.G. Griffiths, Anal. Chem. 50, 1906 (1978).CrossRefGoogle Scholar
  11. 11.
    M.P. Fuller and P.G. Griffiths, Appl. Spectrosc. 34, 533 (1980).CrossRefGoogle Scholar
  12. 12.
    P.R. Young, B.A. Stein, and A.C. Chang, Proc. 28th Natl. SAMPE Symp. Exhib., 824 (1983).Google Scholar
  13. 13.
    R.T. Graf, J.L. Koenig, H. Ishida, Anal. Chem. 56, 773 (1984).CrossRefGoogle Scholar
  14. 14.
    W.W. Wendlandt and H.G. Hecht “Reflectance Spectroscopy”, Interscience, New York (1966) chap. 3.Google Scholar
  15. 15.
    G. Kortum “Reflectance Spectroscopy”, Springer-Verlag, New York (1969) chap. 4.Google Scholar
  16. 16.
    H. Hecht, J. Res. Natl. Bur. Stand. 80A, 567 (1976).Google Scholar
  17. 17.
    P. Kubelka and F. Munk, Z. Tech. Phys. 13, 593 (1931).Google Scholar
  18. 18.
    H. Hecht, Appl. Spectrosc. 34, 157 (1980).CrossRefGoogle Scholar
  19. 19.
    L.J. Fina and J.L. Koenig, to be published.Google Scholar
  20. 20.
    L.J. Fina and J.L. Koenig, Macromolecules, accepted.Google Scholar
  21. 21.
    D.L. Allara, A. Baca, and C.A. Pryde, Macromolecules 11, 1215 (1978).CrossRefGoogle Scholar
  22. 22.
    F.J. Boerio and S.K. Bahl, J. Polym. Sci., Polym. Phys. Ed., 14, 1029 (1976).Google Scholar
  23. 23.
    T.R. Manley and D.A. Williams, Polymet 10, 339 (1969).CrossRefGoogle Scholar
  24. 24.
    C.Y. Liang and S. Krim, J. Molec. Spectrosc. 3, 554 (1959).CrossRefGoogle Scholar
  25. 25.
    R.P. Daubeny, C.W. Bunn, and C.J. Brown, Proc. Roy. Soc., A226., 531 (1954).Google Scholar
  26. 26.
    N.J. Harrick, Appl. Opt. 10, 2344 (1971).CrossRefGoogle Scholar
  27. 27.
    A. Miyake, J. Polym. Sci. 38, 479 (1959).CrossRefGoogle Scholar
  28. 28.
    J.P. Hawranek, P. Neelakantan, R.P. Young, and R.N. Jones, spectrochim. Acta, 32A, 85 (1976).Google Scholar
  29. 29.
    Z. Bodo, Acta Phys. flung. 1, 135 (1951).CrossRefGoogle Scholar
  30. 30.
    P.D. Johnson, J. Opt. Soc. Am. 42, 978 (1952).CrossRefGoogle Scholar
  31. 31.
    M. Born and E. Wolf, “Principles of Optics” 6th ed., Pergammon Press, Oxford (1980).Google Scholar
  32. 32.
    J.R. Reitz, F.J. Milford, and R.W. Christy, “Foundations of Electromagnetic Theory” 3rd ed., Addision-Wesley, Reading, Mass. (1979).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. T. Graf
    • 1
  • J. L. Koenig
    • 1
  • H. Ishida
    • 1
  1. 1.Department of Macromolecular ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations