Fourier Transform Infrared Photoacoustic Spectroscopy of Films

  • N. Teramae
  • S. Tanaka
Part of the Polymer Science and Technology book series (POLS, volume 36)


Fourier transform infrared photoacoustic spectroscopy (FT-IR PAS) is applied to the nondestructive detection of subsurface layers in a bi-layered film. In the course of the study, the heat generated from the rear surface of a film sample is found to be a main cause giving undesirable photoacoustic (PA) spectral features. This phenomenon is discussed theoretically and experimentally. The heat from the rear surface is found to make the PA spectra of the film samples structureless if the sample was simply placed in a PA cell. Careful positioning of the film sample in a PA cell is required. Taking the above results into consideration, spectral separation of subsurface layer of films has been carried out by applying the subtraction technique to the PA amplitude spectra of bi-layered films with various values of the top layer thickness. It has been found that the structure of substrate layer can be detected to the depth corresponding to the thermal diffusion length.


Subsurface Layer Rear Surface PHOTOACOUSTIC Spectroscopy Bilayered Film Thermal Diffusion Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Somorjai and F. Zeaera, J. Phys. Chem., 86, 3070 (1982).CrossRefGoogle Scholar
  2. 2.
    A. Rosencwaig, ‘Photoacoustics and Photoacoustic Spectroscopy’, John Wiley and Sons, New York (1980).Google Scholar
  3. 3.
    G. A. West, J. J. Barrett, D. Siebert and K. V. Reddy, Rev. Sci. Instrum., 54, 797 (1983).CrossRefGoogle Scholar
  4. 4.
    D. W. Vidrine, in ‘Fourier Transform Infrared Spectroscopy’, Vol. 3, J. R. Ferraro and L. J. Basile, Eds., Academic, New York (1982) pp. 125–148.Google Scholar
  5. 5.
    J. F. Mclelland, Anal. Chem. 55, 89A (1983).CrossRefGoogle Scholar
  6. 6.
    J. A. Gardel. la, Jr., D. -Z. Jiang, W. P. McKenna and E. M. Eyring, Appl. Surf. Sci., 15, 36 (1983).Google Scholar
  7. 7.
    M. J. D. Low and G. A. Parodi, Appl. Spectrosc., 34, 76 (1980).CrossRefGoogle Scholar
  8. 8.
    Ibid., J. Photoacoustics, 1, 131 (1982).Google Scholar
  9. 9.
    P. R. Griffiths, ‘Chemical Infrared Fourier Transform Spectroscopy’, John Wiley and Sons, New York (1975).Google Scholar
  10. 10.
    G. Busse and B. Bullemer, Infrared Phys., 18, 255 (1978); and Ibid., 18, 631 (1978).Google Scholar
  11. 11.
    M. G. Rokley, Chem. Phys. Lett., 68, 455 (1979).CrossRefGoogle Scholar
  12. 12.
    M. G. Rokley, D. M. Davis and H. H. Richardson, Science, 210, 918 (1980).CrossRefGoogle Scholar
  13. 13.
    D. W. Vidrine, Appl. Spectrosc., 34, 314 (1980).CrossRefGoogle Scholar
  14. 14.
    M. G. Rockley, Appl. Spectrosc., 34, 405 (1980).CrossRefGoogle Scholar
  15. 15.
    Ibid., Chew. Phys. Lett., 75, 370 (1980).Google Scholar
  16. 16.
    M. G. Rockley, H. H. Richardson and D. M. Davis, J. Photoacoustics, 1, 145 (1982).Google Scholar
  17. 17.
    J. A. Gardella, Jr., E. M. Eyring, J. C. Klein and M. B. Carvalho, Appl. Spectrosc., 36, 574 (1982).Google Scholar
  18. 18.
    J. H. Nelson, J. J. Macdougall, F. G. Baglin, D. W. Freeman, M. Nadler and J. L. Hendrix, Appl. Spectrosc., 36, 574 (1982).CrossRefGoogle Scholar
  19. 19.
    S. M. Riseman, S. I. Yaniger, E. M. Eyring, D. Macinnes, A. G. MacDiarmid and A. J. Heeger, Appl. Spectrosc., 35, 557 (1981).CrossRefGoogle Scholar
  20. 20.
    S. I. Yaniger, S. M. Risenan, T. Frigo and E. M. Fyring, J. Chem. Phys., 76, 4298 (1982).CrossRefGoogle Scholar
  21. 21.
    F. G. Will, R. S. McDonald, R. D. Gleim and M. R. Winkle, J. Chem. Phys., 78, 5847 (1983).CrossRefGoogle Scholar
  22. 22.
    S. I. Yaniger, D. J. Rose, W. P. McKenna and E. M. Eyring, Appl. Spectrosc., 38, 7 (1984).CrossRefGoogle Scholar
  23. 23.
    M. G. Rockey, D. M. Davis and H. H. Richardson, Appl. Spectrosc., 35, 185 (1981).CrossRefGoogle Scholar
  24. 24.
    M. G. Rokley, M. Woodard, H. H. Richardson, D. M. Davis, N. Purdie and J. M. Bowen, Anal. Chem., 55, 32 (1983).CrossRefGoogle Scholar
  25. 25.
    L. B. Lloyd, R. C. Yeates and E. M. Eyring, Anal. Chem., 54, 549 (1982).CrossRefGoogle Scholar
  26. 26.
    S. R. Lowry, D. G. Mead and D. W. Vidrine, Anal. Chem., 54, 546 (1982).CrossRefGoogle Scholar
  27. 27.
    V. Renugopalakrishnan and R. S. Bhatnagar, J. Am. Chem. Soc., 106, 2217 (1984).CrossRefGoogle Scholar
  28. 28.
    G. Laufer, J. T. Huneke, B. S. H. Royce and Y. C. Teng, Appl. Phys. Lett., 37, 517 (1980).CrossRefGoogle Scholar
  29. 29.
    K. Krishnan, Appl. Spectrosc., 35, 549 (1981).CrossRefGoogle Scholar
  30. 30.
    K. Krishnan, S. Hill, J. P. Hobbs and C. S. P. Sung, Appl. Spectrosc., 36, 257 (1982).CrossRefGoogle Scholar
  31. 31.
    S. M. Riseman, F. F. Massoth, G. M. Dhar and E. M. Eyring, J. Phys. Chem., 86, 1760 (1982).CrossRefGoogle Scholar
  32. 32.
    J. B. Kinney and R. H. Staley, J. Phys. Chem., 87, 3735 (1983).CrossRefGoogle Scholar
  33. 33.
    J. A. Gardella, Jr., D. -Z. Jiang and E. M. Eyring, Appl. Spectrosc., 37, 131 (1983).CrossRefGoogle Scholar
  34. 34.
    M. D. Porter, D. P. Karweik, T. Kuwana, W. B. Theis, G. B. Norris and T. O. Tiernan, Appl. Spectros., 38, 11 (1984).CrossRefGoogle Scholar
  35. 35.
    M. G. Rockley and J. P. Devlin, Appl. Spectrosc., 34, 407 (1980).CrossRefGoogle Scholar
  36. 36.
    J. B. Kinney, R. H. Staley, C. L. Reichel and M. S. Wrighton, J. Am. Chem. Soc., 103, 4273 (1981).CrossRefGoogle Scholar
  37. 37.
    N. Teramae, T. Yamanoto, M. Hiroguchi, T. Matsui and S. Tanaka, Chem. Lett., 37 (1982).Google Scholar
  38. 38.
    N. Teramae, M. Hiroguchi and S. Tanaka, Bull. Chem. Soc. Jpn., 55, 2097 (1982).CrossRefGoogle Scholar
  39. 39.
    N. Teramae, M. Hiroguchi and S. Tanaka, Chem. Lett., 1091 (1981).Google Scholar
  40. 40.
    J. B. Kinney and R. H. Staley, Anal. Chem., 55, 343 (1983).CrossRefGoogle Scholar
  41. 41.
    N. C. Fernelius, Appl. Opt., 18, 1784 (1979).CrossRefGoogle Scholar
  42. 42.
    W. A. McClenny, C. A. Bennett, Jr., G. M. Russwurm and R. Richmond, Appl. Opt., 20, 650 (1981).Google Scholar
  43. 43.
    J. M. Chalmers, B. J. Stay, G. F. Kirkbright, D. E. M. Spillane and R. Reedle, Analyst, 106, 1179 (1901).CrossRefGoogle Scholar
  44. 44.
    Y. C. Teng and B. S. P. Royce, Appl. Opt., 21, 77 (1982).CrossRefGoogle Scholar
  45. 45.
    L. C. Aamodt, J. C. Murphy and J. G. Parker, J. Appl. Phys., 48, 927 (1977).CrossRefGoogle Scholar
  46. 46.
    A. C. Tam, Y. H. Wong, Appl. Phys. Lett., 36, 471 (1980).CrossRefGoogle Scholar
  47. 47.
    M. J. Adams, A. A. King and G. F. Kirkbright, Analyst, 101, 73 (1976).CrossRefGoogle Scholar
  48. 48.
    J. J. Freeman, R. M. Friedman and H. S. Reichard, J. Phys. Chem., 84, 315 (1980).CrossRefGoogle Scholar
  49. 49.
    A. Rosencwaig and A. Gersho, J. Appl. Phys., 47, 64 (1976).CrossRefGoogle Scholar
  50. 50.
    N. C. Fernelius, J. Appl. Phys., 51, 650 (1980).CrossRefGoogle Scholar
  51. 51.
    P. Helander, I. Lundstrom and M. McQueen, J. Appl. Phys., 52, 1146 (1981).CrossRefGoogle Scholar
  52. 52.
    Y. Fujii, A. Moritani and J. Nakai, J. Appl. Phys. Jpn., 20, 361 (1981) and Errata, 20, 1005 (1981).CrossRefGoogle Scholar
  53. 53.
    M. Morita, J. Appi. Phys. Jpn., 20, 835 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • N. Teramae
    • 1
  • S. Tanaka
    • 1
  1. 1.Department of Industrial Chemistry Faculty of EngineeringUniversity of TokyoHongo, Bunkyo-ku, Tokyo 113Japan

Personalised recommendations