Advertisement

Combination of Diffuse Reflectance FT-IR Spectroscopy, Fourier Self-Deconvolution and Curve-Fitting for the Investigation of Reacting Coals

  • Peter R. Griffiths
  • Shih-Hsien Wang
Part of the Polymer Science and Technology book series (POLS, volume 36)

Abstract

Coal is a remarkably complex mixture of polymeric materials with mineral inclusions. The organic macerals are believed to consist of a skeletal structure which is composed of clusters of condensed aromatic and hydroaromatic nuclei, joined by methylene, polymethylene, or ether linkages. This lattice is of high molecular weight and is believed to contain smaller, more hydrogen rich, molecules in the pores. The infrared spectrum of most coals is relatively featureless, consisting of several broad bands assignable to common functional groups such as CH2, CH3, C=0, etc., but giving little detailed information on the precise molecular environment of each group. Several workers [1–4] have shown that overlapping bands in coal spectra may be resolved by Fourier selfdeconvolution [5]. We have assigned many of these features to functional groups in specific environments.

Keywords

Derivative Spectrum Gaussian Profile Component Band Deconvolved Spectrum React Coal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. R. Griffiths, S-H. Wang, P. W. Yang, D. E. Henry and I. M. Hamadeh, ACS Div. Fuel Chem. Preprints, 28, 27 (1983).Google Scholar
  2. 2.
    E. L. Fuller, Jr., N. R. Smyrl, R. W. Smithwick and C. S. Daw, ACS Div. Fuel Chem. Preprints, 28, 44 (1983).Google Scholar
  3. 3.
    P. R. Griffiths and S-H. Wang, Fuel, 64, 229 (1985).CrossRefGoogle Scholar
  4. 4.
    P. B. Tooke and A. Grint, Fuel, 62, 1003 (1983).CrossRefGoogle Scholar
  5. 5.
    J. K. Kauppinen, D. J. Moffatt, H. H. Mantsch and D. G. Cameron, Appl. Spectrosc., 35, 271 (1981).CrossRefGoogle Scholar
  6. 6.
    S. -H. Wang, Ph. D. Dissertation, Ohio University, Athens, Ohio (1984).Google Scholar
  7. 7.
    P. C. Gillette, D. Kormos, M. K. Antoon and J. L. Koenig,’Selected Computer Programs with Application to Infrared Spectroscopy’, Digilab Users Group, Cambridge, MA (1979).Google Scholar
  8. 8.
    P. C. Painter, R. W. Snyder, M. Starsinic, M. M. Coleman, D. W. Kuehn and A. Davis, in ‘Coal and Coal Products: Analytical Characterization Techniques’, E. L. Fuller, Jr. , Ed. , Am. Chem. Soc. Symp. Ser. 205 (1982) p. 47.Google Scholar
  9. 9.
    P. C. Painter, R. W. Snyder, M. Starsinic, M. M. Coleman, D. W. Kuehn and A. Davis, Appl. Spectrosc., 35, 475 (1981).CrossRefGoogle Scholar
  10. 10.
    J. N-P. Sun, P. R. Griffiths and C. A. Sperati, Spectrochim. Acta, 39A, 587 (1983).CrossRefGoogle Scholar
  11. 11.
    R. N. Jones, Appl. Opt., 8, 597 (1967).CrossRefGoogle Scholar
  12. 12.
    R. N. Jones, Pure Appl. Chem., 18, 303 (1969).CrossRefGoogle Scholar
  13. 13.a)
    P. R. Solomon, ACS Div. Fuel Chem. Preprints, 24, 184 (1979).Google Scholar
  14. b).
    Ibid. , in ‘Coal and Coal Products: Analytical Characterization Techniques’, E. L. Fuller, Jr. , Ed. , Am. Chem. Soc. Symp. Ser. 205 (1982) p. 77.Google Scholar
  15. 14.
    M. P. Fuller and P. R. Griffiths, Anal. Chem. 50., 1906 (1978).CrossRefGoogle Scholar
  16. 15.
    M. P. Fuller and P. R. Griffiths, Appl. Spectrosc., 34, 533 (1980).CrossRefGoogle Scholar
  17. 16.
    S. R. Dryson, J. Quant. Spectroc. Radiat. Transfer, 16, 611 (1976).CrossRefGoogle Scholar
  18. 17.
    R. J. Noll and A. Pires, Appl. Spectrosc., 34, 351 (1980).CrossRefGoogle Scholar
  19. 18.
    A. Klim, J. Quant. Spectrosc. Radiat. Transfer, 26, 537 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Peter R. Griffiths
    • 1
  • Shih-Hsien Wang
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations