Introduction to Optics and Infrared Spectroscopic Techniques

  • R. T. Graf
  • J. L. Koenig
  • H. Ishida
Part of the Polymer Science and Technology book series (POLS, volume 36)


Infrared spectroscopy is one of the oldest techniques for the molecular level characterization of materials, and it has of course been extensively used to study polymer systems. Excellent review articles exist for the application of both dispersive [1] and Fourier transform instrumentation [2] to polymers. The use of IR to study polymer surfaces and interfaces has also been reviewed [3]. As the number and complexity of IR techniques for examining non-routine samples has increased, there has been a growing tendency to examine samples ‘in situ’. This is especially true where polymer systems are involved. Infrared spectra of such systems as filled polymers, glass reinforced plastics, fibers, and surface treated particulates, have been recorded in the past using relatively old techniques such as transmission and ATR. However, the spectral quality was low. Now it is possible to obtain high quality spectra of these systems by using such techniques as diffuse reflectance, photoacoustic, and IR microscopy.


Attenuate Total Reflectance Critical Angle Internal Reflection Evanescent Wave Brewster Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Krimm, Fortschr. Hochpolym. Forschg. 2, 51 (1960).CrossRefGoogle Scholar
  2. 2.
    J.L. Koenig, in ‘Advances in Polymer Science’ vol. 54, Springer Verlag, Berlin (1983) p. 87.Google Scholar
  3. 3.
    S.R. Culler, H. Ishida, J.L. Koenig, Ann. Rev. Mater. Sci., 12, 363 (1983).CrossRefGoogle Scholar
  4. 4.
    M. Born and E. Wolf, ‘Principles of Optics’ 6th ed., Pergamon Press, Oxford (1980).Google Scholar
  5. 5.
    R.W. Ditchburn, ‘Light’, Interscience, New York (1953).Google Scholar
  6. 6.
    J.R. Reitz, F.J. Milford, and R.W. Christy, ‘Foundations of Electromagnetic Theory’ 3rd ed., Addision Wesley, Reading, Mass. (1979).Google Scholar
  7. 7.
    Y. Ataman and H.B. Mark, Appl. Specrosc. Rev. 11, 1 (1977).CrossRefGoogle Scholar
  8. 8.
    A. Cunningham, G.R. Davies, and I.M. Ward, Polymer 12, 743 (1974).CrossRefGoogle Scholar
  9. 9.
    S.A. Francis and A.H. Ellison J. Opt. Soc. Am. Al, 130 (1959).Google Scholar
  10. 10.
    R.G. Greenler, J. Chem. Phys. 4A, 310 (1966).CrossRefGoogle Scholar
  11. 11.
    R.G. Greenler, R.R. Rahn, and J.P. Schwartz, J. Catalysis, al, 42 (1971).Google Scholar
  12. 12.
    R.G. Greenler, J. Vac. Sci. Technol. La, 1410 (1975).Google Scholar
  13. 13.
    J.D.E. McIntyre, in ‘Advances in Electrochemistry and Electrochemical Engineering’ vol. 9, Wiley, New York (1973) p. 61.Google Scholar
  14. 14.
    H.G. Tompkins, in ‘Methods of Surface Analysis’ vol. 1 Elsevier, Amsterdam (1975).Google Scholar
  15. 15.
    J.F. Blanke, S.E. Vincent, and J. Overend, Spectrochim. Acta 2À, 163 (1976).Google Scholar
  16. 16.
    N.J. Harrick, in ‘Characterization of Metal and Polymer Surfaces’ vol. 2, Academic, New York (1977) p. 153.Google Scholar
  17. 17.
    D.L. Allara, A. Baca, and C.A. Pryde, Macromol. 11, 1215 (1978).CrossRefGoogle Scholar
  18. 18.
    W.W. Wendlandt and H.G. Hecht, ‘Reflectance Spectroscopy’ Wiley Interscience, New York (1967), chap. 2.Google Scholar
  19. 19.
    N.J. Harrick, Appl. Opt. La, 2344 (1971).Google Scholar
  20. 20.
    J. Fahrenfort, Spectrochim. Acta 31, 698 (1961).CrossRefGoogle Scholar
  21. 21.
    J. Fahrenfort, Spectrochim. Acta La, 1103 (1962).Google Scholar
  22. 22.
    N.J. Harrick, J. Phys. Chem. Lei., 1110 (1960).Google Scholar
  23. 23.
    N.J. Harrick, ‘Internal Reflection Spectroscopy’ Wiley Interscience, New York (1967).Google Scholar
  24. 24.
    W.N. Hansen, in ‘Advances in Electrochemistry and Electrochemical Engineering’ vol. 9, Wiley, New York (1973) p. 1.Google Scholar
  25. 25.
    B. Crawford, T.G. Goplen, and D. Swanson, in ‘Advances in Infrared and Raman Spectroscopy’ vol. 4, Heyden, London (1978), chap. 2.Google Scholar
  26. 26.
    M.P. Fuller and P.G. Griffiths, Anal. Chem. 10, 1906 (1978).Google Scholar
  27. 27.
    M.P. Fuller and P.G. Griffiths, Appl. Spectrosc. 14, 533 (1980).CrossRefGoogle Scholar
  28. 28.
    P.R. Young, B.A. Stein, and A.C. Chang, Proc. 28th Natl. SAMPE Symp. Exhib., 824 (1983).Google Scholar
  29. 29.
    R.T. Graf, J.L. Koenig, H. Ishida, Anal. Chem. a, 773 (1984).Google Scholar
  30. 30.
    Ref. 18, chap. 3.Google Scholar
  31. 31.
    G. Korturm ‘Reflectance Spectroscopy’, Springer-Verlag, New York (1969) chap. 4.Google Scholar
  32. 32.
    H. Hecht, J. Res. Natl. Bur. Stand. 80A 567 (1976).Google Scholar
  33. 33.
    P. Kubelka and F. Munk, Z. Tech. Phys. U, 593 (1931).Google Scholar
  34. 34.
    R.W. Frei and J.D. MacNeil, ‘Diffuse Reflectance Spectroscopy in Environmental Problem Solving’ CRC Press, Cleveland (197,3).Google Scholar
  35. 35.
    H. Hecht, Appl. Spectrosc. 14, 157 (1980).CrossRefGoogle Scholar
  36. 36.
    A.G. Bell, Philos. Mag. 1L, 510 (1881).Google Scholar
  37. 37.
    K. Krishnan, Appl. spectrosc. 35 549 (1981).Google Scholar
  38. 38.
    A. Rosencwaig and A. Gersho, J. Appl. Phys. 4/, 64 (1976).Google Scholar
  39. 39.
    A. Rosencwaig, ‘Photoacoustics and Photoacoustic Spectroscopy’, Wiley, New York (1980).Google Scholar
  40. 40.
    W. Vidrine, Appl. Spectrosc. 34, 314 (1980).CrossRefGoogle Scholar
  41. 41.
    D.E. Aspnes, Surf. Sci. 101., 84 (1980).Google Scholar
  42. 42.
    R.M.A. Azzam and N.M. Bashara, ‘Ellipsometry and Polarized Light’ North-Holland, New York (1977).Google Scholar
  43. 43.
    R.H. Muller, in Advances in Electrochemistry and Electrochemical Engineering, vol. 9 (1973) p. 167.Google Scholar
  44. 44.
    P.S. Hauge, Surf. Sci. QL, 108 (1980).Google Scholar
  45. 45.
    M.J. Dignam and M.D. Baker, Appl. Spectrosc. 15., 186 (1981).Google Scholar
  46. 46.
    A. Roseler, Infr. Phys. 21, 349 (1981).CrossRefGoogle Scholar
  47. 47.
    A. Roseler and W. Molgedey 24, 1 (1984).Google Scholar
  48. 48.
    R.W. Stobie, B. Rao, and M.J. Dignam, J. Opt. Soc. Am., 25 (1975).Google Scholar
  49. 49.
    R.N. Jones, D. Escolar, J.P, Hawranek, P. Neelakantan, and R.P. Young, J. Mol. Struct. 1Q, 21 (1973).CrossRefGoogle Scholar
  50. 50.
    T. Fujiyama, J. Herrin, and B.J. Crawford, Appl. spectrosc. Z, 9 (1970).Google Scholar
  51. 51.
    S. Maeda and P.N. Schatz, J. Chem. Phys. 15., 1617 (1961).Google Scholar
  52. 52.
    D.L. Allara, Appl. Spectrosc. 11, 358 (1979).CrossRefGoogle Scholar
  53. 53.
    J.P. Hobbs, C.S.P. Sung, K. Krishnan, and S. Hill, Macromol. Lb., 193 (1983).Google Scholar
  54. 54.
    M.J. Dignam, private communication (1984).Google Scholar
  55. 55.
    M.J. O’Keefe, J. Chem. Phys. 32, 1789 (1963).CrossRefGoogle Scholar
  56. 56.
    R.W. Stobie, B. Rao, and M.J. Dignam, Appl. Opt. 1A, 999 (1975).Google Scholar
  57. 57.
    M.J. Dignam, Polymer Preprints 31, 149 (1984).Google Scholar
  58. 58.
    T.H. Allen and R.J. Sunderland, Thin Solid Films 45., 169 (1977).Google Scholar
  59. 59.
    J.R. Adams, J.R. Zeidler, and N.M. Bashara, Opt. Comm. 1U, 115 (1975).CrossRefGoogle Scholar
  60. 60.
    R.R. Schaefer, J. Phys., Colloq. C1Q, 87 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. T. Graf
    • 1
  • J. L. Koenig
    • 1
  • H. Ishida
    • 1
  1. 1.Department of Macromolecular ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations