X-Ray Crystallographic Studies of Immunoglobulins

  • Roberto J. Poljak


The techniques of X-ray crystallography have been successfully applied to the study of complex biological polymers such as nucleic acids and proteins. These studies have provided structural models from which we have tried to explain the mechanisms of DNA replication, of enzyme action, and of other biological phenomena. The determination of the structure of several crystalline enzymes, achieved within the last ten years, is an outstanding example of this approach. As a result of such efforts, models have been obtained for the highly specific interactions between enzymes and their substrates. Development of methods and techniques has reached the point at which it is now possible to attempt the determination of more complex structures such as those of immunoglobulins. It is hoped that a knowledge of the three-dimensional structure of immunoglobulins will provide a useful model for the correlation of their function and primary structure and the genetic control of variability and specificity of antibodies. This article is a review of the first models of immunoglobulin structure obtained by X-ray crystallographic methods. A brief outline of some aspects of the structure and properties of immunoglobulins and the theoretical and practical aspects of protein crystallography will be presented first. The most detailed account to be given in this review will be that of the Fab structure which is currently under study in the author’s laboratory.


Cold Spring Harbor Polypeptide Chain Heavy Atom Homology Region Amino Acid Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amzel, L.M., Avey, H.P., and Poljak, R.J. (1972). (in preparation)Google Scholar
  2. Avey, H.P., Poljak, R.J., Rossi, G., and Nisonoff A. (1968). Nature 200: 1248.CrossRefGoogle Scholar
  3. Baglioni, C., Cioli, D., Gorini, G., Ruffilli, A., and Alescio-Zonta, L. (1967). Cold Spring Harbor Symp. Quant. Biol. 32: 147.CrossRefGoogle Scholar
  4. Bjork, I., and Tanford, C. (1971). Biochemistry 10: 1271.PubMedCrossRefGoogle Scholar
  5. Cebra, J.J., Ray, A., Benjamin, D., and Birshtein, B. (1971). In Amos, B. (ed.), Progress in Immunology, Academic Press, New York, p. 269.Google Scholar
  6. Deutsch, H.F., and Suzuki, T. (1971). Ann. N.Y. Acad. Sci. 190: 472.PubMedCrossRefGoogle Scholar
  7. Dickerson, R.E. (1964). In Nevrath, H. (ed.), The Proteins, Vol. II, Academic Press, New York, p. 603.Google Scholar
  8. Edelman, G.M., and Gall, W.E. (1969). Ann. Rev. Biochem. 38: 415.PubMedCrossRefGoogle Scholar
  9. Edelman, G.M., Cunningham, B.A., Gall, W.E., Gottlieb, P.D., Rutishauser, V., and Waxdal, M.J. (1969). Proc. Natl. Acad. Sci. U.S. 63: 78.CrossRefGoogle Scholar
  10. Edmundson, A.B., Wood, M.K., Schiffer, M., Hardman, K.D., Ainsworth, C.F., Ely, K.R., and Deutsch, H.F. (1970). J. Biol. Chem. 245: 2763.PubMedGoogle Scholar
  11. Edmundson, A.B., Schiffer, M., Wood, M.K., Hardman, K.D., Ely, K.R., and Ainsworth, C.F. (1971). Cold Spring Harbor Symp. Quant. Biol. 36: 427.CrossRefGoogle Scholar
  12. Edmundson, A.B., Schiffer, M., Ely, K.R., and Wood, M.K. (1972). Biochemistry 11: 1822.PubMedCrossRefGoogle Scholar
  13. Feinstein, A., and Rowe, A.J. (1965). Nature 205: 147.PubMedCrossRefGoogle Scholar
  14. Goldstein, D.J., Humphrey, R.L., and Poljak, R.J. (1968). J. Mol. Biol. 35: 247.PubMedCrossRefGoogle Scholar
  15. Green, N.M., Dourmashkin, R.R., and Parkhouse, R.M.E. (1971). J. Mol. Biol. 56: 203.PubMedCrossRefGoogle Scholar
  16. Haber, E., Richards, F.F., Spragg, J., Austen, K.F., Vallotton, M., and Page, L.B. (1967). Cold Spring Harbor Symp. Quant. Biol. 32: 299.CrossRefGoogle Scholar
  17. Haimovich, J., Givol, D., and Eisen, H.N. (1970). Proc. Natl. Acad. Sci. U.S. 67: 1656.CrossRefGoogle Scholar
  18. Hill, R.L., Delaney, R., Fellows, Jr., R.E., and Lebowitz, H.E. (1966). Proc. Nat. Acad. Sci. U.S. 56: 1762.CrossRefGoogle Scholar
  19. Holasek, A. Kratkey, O., Mittlebach, P., and Wawra, H. (1963). J. Mol. Biol. 7: 321.PubMedCrossRefGoogle Scholar
  20. Holmes, K.C. and Blow, D.M. (1966). The Use of X-ray Diffraction in the Study of Protein and Nucleic Acid Structure, Interscience, New York.Google Scholar
  21. Humphrey, R.L. (1967). J. Mol. Biol. 29: 525.CrossRefGoogle Scholar
  22. Humphrey, R.L. and Owens, A.H. Jr. (1972). In Harvey, A.M., Johns, R.J., Owens, A.H. Jr., and Ross, R.S. (eds.), The Principles and Practice of Medicine, Appleton Century Crofts, New York, p. 1206.Google Scholar
  23. Humphrey, R.L., Avey, H.P., Becka, L.N., Poljak, R.J., Rossi, G., Choi, T.K., and Nisonoff, A. (1969). J. Mol. Biol. 43: 223.PubMedCrossRefGoogle Scholar
  24. Jirgensons, B., Saine, S., and Ross, D.L. (1966). J. Biol. Chem. 241: 2314.PubMedGoogle Scholar
  25. Kabat, E.A. (1966). J. Immunol. 97: 1.PubMedGoogle Scholar
  26. Kabat, E.A. (1968). Structural Concepts in Immunology and Immunochemistry, Holt, Rinehart and Winston, New York.Google Scholar
  27. Karlsson, F.A., Peterson, P.A., and Berggord, I. (1972). J. Biol. Chem. 247: 1065.PubMedGoogle Scholar
  28. Maurer, P.H. (1964). Progr. Allergy 8: 1.Google Scholar
  29. Milstein, C., and Pink, J.R.L. (1970). In Butler, J.V.A. and Noble, D. (eds.), Progress in Biophysics and Molecular Biology, Vol. 21, Pergamon Press, New York, p. 209.Google Scholar
  30. Nisonoff, A., Wissler, F.C., Lippman, L.N., and Woer, D.L. (1960). Arch. Biochem. Biophys. 89: 230.PubMedCrossRefGoogle Scholar
  31. Nisonoff, A., Zappacosta, S., and Jureziz, R. (1967). Cold Spring Harbor Symp. Quant. Biol. 32: 89.CrossRefGoogle Scholar
  32. Perutz, M.F., Rossman, M.G., Cullis, A.F., Muirhead, H., Will, G., and North, A.C.T. (1960). Nature 185: 416.PubMedCrossRefGoogle Scholar
  33. Pilz, I., Puchwein, G., Kratky, O., Herbst, M., Naager, O., Gall, W.E., and Edelman, G.M. (1970). Biochemistry 9: 211.PubMedCrossRefGoogle Scholar
  34. Poljak, R.J., and Dintzis, H.M. (1966). J. Mol. Biol. 17: 546.PubMedCrossRefGoogle Scholar
  35. Poljak, R.J., Goldstein, D.J., Humphrey, R.L., and Dintzis, H.M. (1967). Cold Spring Harbor Symp. Quant. Biol. 32: 95.CrossRefGoogle Scholar
  36. Poljak, R.J., Amzel, L.M., Avey, H.P., Becka, L.N., Goldstein, D.J., and Humphrey, R.L. (1971). Cold Spring Harbor Symp. Quant. Biol. 36: 421.CrossRefGoogle Scholar
  37. Poljak, R.J., Amzel, L.M., Avey, H.P., Becka, L.N., and Nisonoff, A. (1972). Nature New Biology 235: 137.PubMedCrossRefGoogle Scholar
  38. Porter, R.R. (1959). Biochem. J. 73: 119.PubMedGoogle Scholar
  39. Putnam, F.W., Titani, K., Wikler, M., and Shinoda, T. (1967). Cold Spring Harbor Symp. Quant. Biol. 32: 9.CrossRefGoogle Scholar
  40. Rossi, G., and Nisonoff, A. (1968). Biochern. Biophys. Res. Commun. 31: 914.CrossRefGoogle Scholar
  41. Rossi, G., Choi, T.K., and Nisonoff, A. (1969). Nature 233: 837.CrossRefGoogle Scholar
  42. Rowe, E.S. (1971). Ph.D. Thesis, Department of Biochemistry, Duke University.Google Scholar
  43. Sage, H.J., Deutsch, H.F., Fasman, G., and Levine, L. (1964). Immunochemistry 1: 133.PubMedCrossRefGoogle Scholar
  44. Sarma, V.R., Silverton, E.W., Davies, D.R., and Terry, W.D. (1971a). J. Biol. Chem. 246: 3753.PubMedGoogle Scholar
  45. Sarma, V.R., Davies, D.R., Labaw, L.W., Silverton, E.W., and Terry, W.D. (1971b). Cold Spring Harbor Symp. Quant. Biol. 36: 413.CrossRefGoogle Scholar
  46. Schechter, I. (1971). Ann. N.Y. Acad. Sci. 190: 394.PubMedCrossRefGoogle Scholar
  47. Schiffer, M., Hardman, K.D., Wood, M.K., Edmundson, A.B., Hook, M.E., and Ely, K.R. (1970). J. Biol. Chem. 245: 728.PubMedGoogle Scholar
  48. Sela, M. (1969). Science 166: 1365.PubMedCrossRefGoogle Scholar
  49. Singer, S.J., Slobin, L.I., Thorpe, N.O., and Fenton, J.W. (1967). Cold Spring Harbor Symp. Quant. Biol. 32: 99.CrossRefGoogle Scholar
  50. Small, P.A., Reisfeld, R.A., and Dray, S. (1966). J. Mol. Biol. 16: 328.PubMedCrossRefGoogle Scholar
  51. Solomon, A., and McLaughlin, C.L. (1969). J. Biol. Chem. 244: 3393.PubMedGoogle Scholar
  52. Solomon, A., McLaughlin, C.L., Wei, C.H., and Einstein, J.R. (1970). J. Biol. Chem. 245: 5289.PubMedGoogle Scholar
  53. Steiner, L.A., and Blumberg, P.M. (1971). Biochemistry 26: 4725.CrossRefGoogle Scholar
  54. Suzuki, T., and Deutsch, H.F. (1967). J. Biol. Chem. 242: 2725.PubMedGoogle Scholar
  55. Turner, M.W., and Bennich, H. (1968). Biochem. J. 107: 171.PubMedGoogle Scholar
  56. Valentine, R.C., and Green, N.M. (1967). J. Mol. Biol. 27: 615.PubMedCrossRefGoogle Scholar
  57. Welscher, H.D. (1969). Int. J. Protein Research 1: 267.CrossRefGoogle Scholar
  58. Wu, T.T., and Kabat, E.A. (1970). J. Exp. Med. 132: 211.PubMedCrossRefGoogle Scholar
  59. Yguerabide, J., Epstein, H.F., and Stryer, L. (1970). J. Mol. Biol. 51: 573.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Roberto J. Poljak
    • 1
  1. 1.Department of BiophysicsJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations