Skip to main content

Die Stress Measurement Using Piezoresistive Stress Sensors

  • Chapter
Thermal Stress and Strain in Microelectronics Packaging

Abstract

The in-situ measurement of mechanical stress in microelectronics packages has become desirable in recent years as a result of evolving packaging technology. In the case of integrated circuit (IC) packages, stress can be produced either through the die attachment process or through encapsulation in a molding material. In the case of chip-on-board (COB) packaging, stress can be produced by the chip coating used to protect the IC against handling damage and chemical attack. As die sizes have increased, stresses from these sources have steadily grown in magnitude, resulting in such phenomena as die cracking or shear stress-induced breakage of the die passivation and metal conductors under the passivation. In order to quantitatively determine the stress magnitudes in a packaged IC it is desirable to have a test device that can simulate the actual IC chip as closely as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, C. S., “Piezoresistance Effect in Germanium and Silicon,” Phys. Rev., 94, 1956, p. 42.

    Article  Google Scholar 

  2. Mason, W. P., and R. N. Thurston, “Use of Piezoresistive Materials in the Measurement of Displacement, Force, and Torque,” J. Acoustical Soc. Am., 29, 1957, p. 1096.

    Article  Google Scholar 

  3. Pfann, W. G., and R. N. Thurston, “Semiconducting Stress Transducers Utilizing the Transverse and Shear Piezoresistance Effects,” J. Appl. Phys., 32, 1961, p. 2008.

    Article  Google Scholar 

  4. Tufte, O. N., and E. L. Stelzer, “Piezoresistive Properties of Silicon Diffused Layers,” J. Appl. Phys., 34, 1963, p. 313.

    Article  Google Scholar 

  5. Spencer, J. L., W. H. Schroen, G. A. Bednarz, J. A. Bryan, T. D. Metzgar, R. D. Cleveland, and D. R. Edwards, “New Quantitative Measurements of IC Stress Introduced by Plastic Packages,” Proc. 19th Annual Reliability Physics Symposium, 1981, pp. 74–80.

    Google Scholar 

  6. Landau, L. D., and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1984, pp. 86–88.

    Google Scholar 

  7. Ashcroft, N. W., and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York, 1976, pp. 250–251.

    Google Scholar 

  8. Bittle, D. A., J. C. Suhling, R. E. Beaty, R. C. Jaeger, and R. W. Johnson, “Piezoresistive Stress Sensors for Structural Analysis of Electronic Packages,” J. Electronic Packaging, 113, 1991, p. 203.

    Article  Google Scholar 

  9. Landau, L. D., and E. M. Lifshitz, Theory of Elasticity, Addison Wesley, Reading, MA, 1959, pp. 36–41.

    Google Scholar 

  10. Smith, C. S., “Macroscopic Symmetry and Properties of Crystals,” Solid State Physics, Vol. 6, F. Seitz and D. Turnbull, eds. Academic Press, New York, 1958, pp. 175–249.

    Google Scholar 

  11. Middelhoek, S., and S. A. Audet, Silicon Sensors, Academic Press, New York, 1989, pp. 105–151.

    Google Scholar 

  12. Kanda, Y., “A Graphical Representation of the Piezoresistance Coefficients in Silicon,” IEEE Trans. Electronic Devices, ED-29, 1982, p. 64.

    Google Scholar 

  13. Goldstein, H., Classical Mechanics, 2d edn., Addison Wesley, Reading, MA, 1981, pp. 128–148.

    Google Scholar 

  14. Thurston, R. N., “Use of Semiconductor Transducers in Measuring Strains, Accelerations, and Displacements,” Physical Acoustics, Vol. I, Part B, W. P. Mason, ed., Academic Press, New York, 1964, pp. 215–235.

    Google Scholar 

  15. Sze, S. M., Physics of Semiconductor Devices, 2d edn., Wiley, New York, 1981, pp. 12–16.

    Google Scholar 

  16. Chelikowsky, J. R., and M. L. Cohen, “Nonlocal Pseudopotential Calculations for the Electronic Structure of Eleven Diamond and Zinc-Blende Semiconductors,” Phys. Rev., B14, 1976, p. 556.

    Article  Google Scholar 

  17. Herring, C., “Transport Properties of a Many-Valley Semiconductor,” Bell System Technical J, 34, 1955, p. 237.

    Google Scholar 

  18. Herring, C., and E. Vogt, “Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering,” Phys. Rev., 101, 1956, p. 944.

    Article  Google Scholar 

  19. Keyes, R. W., “The Effects of Elastic Deformation on the Electrical Conductivity of Semiconductors,” Solid State Physics, Vol. 11, F. Seitz and D. Turnbull, eds., Academic Press, New York, 1960, pp. 149–221.

    Google Scholar 

  20. Tufte, O. N., and E. L. Stelzer, “Piezoresistive Properties of Heavily Doped n-Type Silicon,” Phys. Rev., 133A, 1964, p. 1705.

    Article  Google Scholar 

  21. Ref. 7, pp. 36–37.

    Google Scholar 

  22. Boer, K. W., Survey of Semiconductor Physics, Van Nostrand Reinhold, New York, 1990, pp. 210–222.

    Book  Google Scholar 

  23. Jaeger, R. J., Introduction to Microelectronic Fabrication, Vol. V in Modular Series on Solid State Devices, G. W. Neudeck and R. F. Pierret, eds., Addison Wesley, Reading MA, 1988, pp. 49–62.

    Google Scholar 

  24. Miura, H., A. Nishimura, S. Kawai, and K. Nishi, “Development and Application of the Stress Sensing Test Chip for IC Plastic Packages,” Proc. 64th Annual Meeting of the Japanese Society of Mechanical Engineers, pp. 1826–1832.

    Google Scholar 

  25. Natarajan, B., and B. Bhattacharyya, “Die Surface Stresses in a Molded Plastic Package,” Proc. 36th Electronic Components Conference, IEEE, 1986, pp. 544–551.

    Google Scholar 

  26. Lundström, P., and K. Gustafsson, “Mechanical Stress and Life for Plastic-Encapsulated Large Area Chip,” Proc. 38th Electronic Component and Technology Conference, IEEE, 1988, pp. 396–405.

    Google Scholar 

  27. Beaty, R. E., J. C. Suhling, C. A. Moody, D. A. Bittle, R. W. Johnson, R. D. Butler, and R. C. Jaeger, “Calibration Consideratons for Piezoresistive-based Stress Sensors,” Proc. 40th Electronic Component and Technology Conference, IEEE, 1990, pp. 797–806 and “Piezoresistive Coefficient Variation in Silicon Stress Sensors Using a Four-Point Bend Text Fixture,” IEEE Trans. Components, Hybrids, Manuf. Technol., CHMT-15, 1992, p. 904.

    Google Scholar 

  28. Sze, S. M., Semiconductor Technology,2d edn., McGraw-Hill, New York, 1988, Chap. 11.

    Google Scholar 

  29. Beadle, W. E., J. C. C. Tsai, and R. D. Plummer, Quick Reference Manual for Silicon Integrated Circuit Technology, Wiley, New York, 1985, pp. 4–10.

    Google Scholar 

  30. Beck, J. V., and K. J. Arnold, Parameter Estimation in Engineering and Science, Wiley, New York, 1977.

    Google Scholar 

  31. Thurston, R. N., “Use of Semiconductor Transducers,” Physical Acoustics, Vol. 1 Part B, W. P. Mason, ed., Academic Press, New York, 1964, pp. 215–235.

    Google Scholar 

  32. Gee, S. A., V. R. Akylas, and W. F. van den Bogert, “The Design and Calibration of a Semiconductor Strain Gauge Array,” 1988 IEEE Proc. Microelectronic Test Structures., IEEE, 1988, pp. 185–191.

    Google Scholar 

  33. Grove, A. S., Physics and Technology of Semiconductor Devices, Wiley, New York, 1967, pp. 321–324.

    Google Scholar 

  34. Suhling, J. C., M. T. Carey, R. W. Johnson, and R. C. Jaeger, “Stress Measurement in Microelectronic Packages Subjected to High Temperatures,” ASME Winter Annual Meeting, Dec. 1991, ASME publication AMD-Vol. 131/EEP-Vol. 1, Manufacturing Processes and Materials Challenges in Microelectronic Packaging, ASME, 1991, pp. 143–152.

    Google Scholar 

  35. Sweet, J. N., M. R. Tuck, D. W. Peterson, and D. W. Palmer, “Short and Long Loop Manufacturing Feedback Using a Multisensor Assembly Test Chip,” IEEE Trans. Components, Hybrids, Manuf. Technol., CHMT-14, 1991, p. 529.

    Google Scholar 

  36. Bastawros, A. F., and A. S. Vososhin, “In-Situ Calibration of Stress Chips,” Proc. 40th Electronic Component and Technology Conference, IEEE, 1990, pp. 791795.

    Google Scholar 

  37. Suhir, E., “Thermal Stress Failures in Microelectronic Components—Review and Extension,” Advances in Thermal Modeling of Electronic Components, Vol. 1, A. Bar-Cohen and A. D. Krans, eds., Hemisphere Publishing, New York, 1988, pp. 337–412.

    Google Scholar 

  38. van Kassel, C. G. M., S. A. Gee, and J. J. Murphy, “The Quality of Die-Attachment and Its Relationship to Stresses and Vertical Die-Cracking,” IEEE Trans. Components, Hybrids, CHMT-6, 1983, p. 414.

    Article  Google Scholar 

  39. Groothuis, S., W. Schroen, and M. Murtuza, “Computer Aided Stress Modeling for Optimizing Plastic Package Reliability,” Proc. 23d Annual Reliability Physics Symposium, 1985, pp. 184–191.

    Google Scholar 

  40. Edwards, D. R., K. G. Heinen, S. K. Groothuis, and J. E. Martinez, “Shear Stress Evaluation of Plastic Packages,” IEEE Trans. Components, Hybrids, Manuf. Technol., CHMT-12, 1987, p. 618.

    Article  Google Scholar 

  41. Gee, S. A., W. F. van den Bogert, and V. R. Akylas, “Strain-Gauge Mapping of Die Surface Stresses,” IEEE Trans. Components, Hybrids, Manuf. Technol., CHMT-12, 1989, p. 587.

    Google Scholar 

  42. Miura, H., A. Nishimura, S. Kawai, and G. Murakami, “Structural Effect of IC Plastic Package on Residual Stress in Silicon Chips,” Proc. 40th Electronic Component and Technology Conference, IEEE, 1990, pp. 316–321.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Van Nostrand Reinhold

About this chapter

Cite this chapter

Sweet, J.N. (1993). Die Stress Measurement Using Piezoresistive Stress Sensors. In: Lau, J.H. (eds) Thermal Stress and Strain in Microelectronics Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7767-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7767-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7769-6

  • Online ISBN: 978-1-4684-7767-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics