A Prediction of the Thermal Fatigue Life of Solder Joints Using Crack Propagation Rate and Equivalent Strain Range

  • Ryohei Satoh


With high performance and high density of computer and other electronic circuits, it becomes very important to assure the reliability of smaller and smaller solder joints. In particular, more accurate prediction of thermal fatigue life is required for large thermal stress induced by power and temperature cycling. In this chapter an accurate estimation method for thermal fatigue life is described.


Fatigue Life Solder Joint Strain Range Equivalent Strain Thermal Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Norris, K. C., and A. H. Landzberg, “Reliability of Controlled Collapse Interconnections,” IBM J. Res. Develop., 13, 1969, p. 266.CrossRefGoogle Scholar
  2. 2.
    Wild, R. N., “Fatigue Properties of Solder Joints,” Welding J., 51, 1972, pp. 521S–526S.Google Scholar
  3. 3.
    Wild, R. N., “Some Fatigue Properties of Solders and Solder Joints,” presented in Internepcon, Brighton, England, 1975.Google Scholar
  4. 4.
    Goldmann, L. S., “Geometric Optimization of Controlled Collapse Interconnections,” IBM J. Res. Develop., 13(3), 1969, pp. 251–265.CrossRefGoogle Scholar
  5. 5.
    Tobias, P. A., N. A. Sinclair, and A. S. Van, “The Reliability of Controlled-Collapse Solder LSI Interconnections,” ISHM Proc., 1976, p. 60.Google Scholar
  6. 6.
    Shah, H. J., and J. H. Kelly, “Effect of Dwell Time on Thermal Cling of the Flip Chip Joint,” ISHM Proc., 1970, paper 3, 4.Google Scholar
  7. 7.
    Sinclair, N. A., “Thermal Cycle Fatigue Life of LSI Solder Interconnections,” Proc. International Electrical Conference and Exposition, Toronto, 1982, p. 56.Google Scholar
  8. 8.
    Totta, P. A., “Flip-Chip Solder Terminals,” Proc. 21st Electronics Components Conference,Washington, DC, 1971, p. 275.Google Scholar
  9. 9.
    Engelmaier, W., “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Trans. Components,Hybrids, and Manufacturing Technology, CHMT-6, 1983, pp. 232–237.Google Scholar
  10. 10.
    Tribula, D. et al., “Observations on the Mechanisms of Fatigue in Eutectic Pb–Sn Solder Joints,” ASME Trans. J. Electron. Pack., 111, June 1983, pp. 83–89.CrossRefGoogle Scholar
  11. 11.
    Fox, L. R., J. W. Sofia, and M. C. Shine. “Investigation of Solder Fatigue Acceleration Factors,” IEEE Trans. Components,Hybrids, and Manufacturing Technology, CHMT-8, 1985, pp. 275–281.Google Scholar
  12. 12.
    Solomon, H. D., “Fatigue of 60/40 Solder,” IEEE Trans. Components,Hybrids, and Manufacturing Technology, CHMT-9, December 1986, pp. 423–432.Google Scholar
  13. 13.
    Lau, J. H., D. W. Rice, and P. A. Avery, “Elasto-plastic Analysis of Surface-mount Solder Joints,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, CHMT-10, September 1987, pp. 346–357.Google Scholar
  14. 14.
    Satoh, R., M. Ohshima, K. Hirota, and I. Ishi, “Optimum Bonding Shape Control on Micro Solder Joints of IC and LSI,” J. Japan. Inst. Metals., 51(6), 1987, pp. 553–560.Google Scholar
  15. 15.
    Satoh, R., M. Ohshima, K. Arakawa, “Thermal Fatigue Life of Pb–Sn Alloy Joint on Electronics Circuits,” Proc. Conference Japan Institute of Metals, 1988, p. 144.Google Scholar
  16. 16.
    Zubelewicz, A., et al., “Lifetime Prediction of Solder Materials,” ASME Trans. J. Electronic Packaging, 111, September 1989, pp. 179–182.CrossRefGoogle Scholar
  17. 17.
    Manson, S. S., “Fatigue: A Complex Subject—Some spl Approximations,” Exp. Mech., 5, 1965, pp. 193–226.CrossRefGoogle Scholar
  18. 18.
    Coffin, L. F., “Low Cycle Fatigue: A Review,” Appl. Mech. Res., 1(3), October 1962, pp. 129–141.Google Scholar
  19. 19.
    Coffin, L. F., Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Trans. ASME, 76, 1954, pp. 931–950.Google Scholar
  20. 20.
    Yokobori, T., Rep. Res. Inst. Str. and Frac. Mater., Tohoku Univ., 5, 1969, p. 19.Google Scholar
  21. 21.
    Bathe, K. J., “ADINA—A Finite Element Program for Automatic Dynamic Incremental Nonlinear Analysis,” Rep. 82448–1, MIT, 1975.Google Scholar
  22. 22.
    Thwaites, C. J., and W. B. Hampshire, Welding J., 55, 1976, p. 323s.Google Scholar
  23. 23.
    Laird, C., and G. C. Smith, Phil. Mag., 7–77, 1962, p. 847.CrossRefGoogle Scholar
  24. 24.
    Laird, C., ASTM STP, 415, 1967, p. 131.Google Scholar
  25. 25.
    Pelloux, R. M. N., Trans. Am. Soc. Metals, 62(1), 1969, p. 281.Google Scholar
  26. 26.
    Von Mises, R., Nachr. Ges. Wiss. Gott., 1913, p. 582.Google Scholar
  27. 27.
    Davies, R. L., “High Strength, Low Temperature Bonding With Silver–Tin Solders,” Welding J., 1976, pp. 838–842.Google Scholar
  28. 28.
    Lau, J. H., and D. W. Rice, “Effects of Standoff Height on Solder Joint Fatigue,” Proc. NEPCON West, 1986, pp. 437–454.Google Scholar
  29. 29.
    Lau, J. H., and D. W. Rice, “Solder Joint Fatigue in Surface Mount Technology: State of the Art,” Solid-State Technol., 28, 1985, pp. 91–104.Google Scholar
  30. 30.
    Bester, M. H., “Metallurgical Aspects of Soldering Gold and Gold Plating,” Proc. Tech. Programme Intern., 1968, pp. 211–231.Google Scholar
  31. 31.
    Fellows, J. A., et al. (ed.) “Fractography and Atlas of Fractographs,” Metals Handbook, Vol. 9, American Society for Metals, 1974.Google Scholar
  32. 32.
    Boyer, H. E., et al. (ed.), “Fracture Analysis and Prevention,” Metals Handbook, Vol. 11, American Society for Metals, 1986.Google Scholar
  33. 33.
    Frost, N. E., and D. S. Dugdale, J. Mech. Phys. Solids, 6, 1958, p. 92.CrossRefGoogle Scholar
  34. 34.
    Manson, S. S., Thermal Stress and Low Cycle Fatigue. McGraw-Hill, New York, 1966.Google Scholar
  35. 35.
    Coffin, L. F., Jr., “Fatigue at High Temperature” Fatigue at Elevated Temperatures, ASTM STP 520, American Society for Testing and Materials, 1973, pp. 5–34.Google Scholar
  36. 36.
    “Development of Highly Reliable Soldered Joints for Printed Circuit Boards,” Westinghouse Rep., no. N69–25697, 1968.Google Scholar
  37. 37.
    Clatterbaugh, G. V., and H. K. Charles, Jr., “Thermomechanical Behavior of Soldered Interconnects for Surface Mounting: A Comparison of Theory and Experiment,” Proc. 35th Electronic Components Conference, 1985, pp. 60–72.Google Scholar
  38. 38.
    Lau, J. H., and G. Harkins, “Thermal-Stress Analysis of SOIC Packages and Interconnections,” Proc. 38th Electronic Components Conference, 1988, pp. 23–31.Google Scholar

Copyright information

© Van Nostrand Reinhold 1993

Authors and Affiliations

  • Ryohei Satoh

There are no affiliations available

Personalised recommendations