# Thermomechanics for Electronics Packaging

## Abstract

With very few exceptions (for example, Invar, an iron-nickel alloy), substances expand when their temperature is raised and contract when cooled. The deformation (expansion or contraction) due to temperature change in the absence of mechanical loads is called thermal strain. The thermal strain is not exactly linear with temperature change (for example, see Chapter 5), but for first-order approximation and small temperature changes, this strain can be described as proportional to the temperature change. This proportionality is expressed by the *coefficient of linear thermal expansion*, which is defined as the change in length that a bar of unit length undergoes when its temperature is changed by one degree.

## Keywords

Solder Joint Principal Stress Creep Rate Yield Surface Creep Strain## Preview

Unable to display preview. Download preview PDF.

## References

- 1.Chen, W. T., and C. W. Nelson, “Thermal Stresses in Bonded Joints,”
*IBM J. Research and Development*,**23**(2), 1979, pp. 179–187.CrossRefGoogle Scholar - 2.Suhir, S., “Interfacial Stresses in Bimetal Thermostats,”
*ASME J. Applied Mechanics*,**55**, 1989, pp. 595–600.CrossRefGoogle Scholar - 3.Durelli, A. J., and C. H. Tsao, “Determination of Thermal Stresses in Three-Ply Laminates,”
*J. Applied Mechanics*,*Transactions of ASME*, 77, 1955, pp. 190–192.Google Scholar - 4.Evans, A. G., and J. W. Hutchinson, “On the Mechanics of Delamination and Spalling in Compressed Films,”
*Int. J. Solids and Structures*,**20**, 1984, 455–466.CrossRefGoogle Scholar - 5.Hu, S. M., “Film-Edge Induced Edge Stress in Substrates,” J.
*Applied Physics*,**50**(7), 1979, pp. 4661–4666.CrossRefGoogle Scholar - 6.Isomae, S., `Stress Distributions in Silicon Crystal Substrates With Thin Films,“
*J. Applied Physics*,**52**(4), 1981, pp. 2782–2791.CrossRefGoogle Scholar - 7.Eischen, J. W., C. Chung, and J. H. Kim, “Realistic Modeling of Edge Effect Stresses in Bimaterial Elements,”
*J. Electronic Packaging*,*Trans. ASME*,**112**, March 1990, pp. 16–23.Google Scholar - 8.Roll, K., “Analysis of Stress and Strain Distribution in Thin Films and Substrates,”
*J. Applied Physics*,**47**(7), 1976, pp. 3224–3229.CrossRefGoogle Scholar - 9.Engel, P. A., “Structural Analysis for Circuit Card Systems Subjected to Bending,”
*J*.*Electronic Packaging*,*Trans. ASME*,**112**, March 1990, pp. 2–10.Google Scholar - 10.Kuo, A., “Thermal Stresses at the Edge of a Bimetallic Thermostat,”
*J. Applied Mechanics, Trans. ASME*,**56**, 1989, pp. 585–589.CrossRefGoogle Scholar - 11.Silvester, P., and R. L. Ferrari,
*Finite Element for Electrical Engineers*, Cambridge University Press, Cambridge, UK, 1983.Google Scholar - 12.Strang, G., and G. J. Fix,
*An Analysis of the Finite Element Method*, Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar - 13.Bathe, K. J.,
*Finite Element Procedures in Engineering Analysis*, Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar - 14.Weaver, W., and P. R. Johnston,
*Finite Elements for Structural Analysis*, Prentice-Hall, Englewood Cliffs, NJ, 1984.Google Scholar - 15.Oden, J. T.,
*Finite Elements of Nonlinear Continua*, McGraw-Hill, New York, 1973.Google Scholar - 16.Tong, P., and J. N. Rossettos,
*Finite-Element Method: Basic Technique and Implementation*, MIT Press, Cambridge, MA, 1977.Google Scholar - 17.Lau, J. H., “A Note on the Calculation of Thermal Stresses in Electronic Packaging by Finite Element Methods,”
*J. Electronic Packaging*,*Trans. ASME*,**111**, Dec. 1989, pp. 313–320.CrossRefGoogle Scholar - 18.Kikuchi, N.,
*Finite Element Methods in Mechanics*, Cambridge University Press, Cambridge, UK, 1986.CrossRefGoogle Scholar - 19.Hughes, T.,
*The Finite Element Method*, Prentice-Hall, Englewood Cliffs, NJ, 1987.Google Scholar - 20.Zienkiewicz, O. C.,
*The Finite Element Method in Engineering Science*, McGraw-Hill, London, 1971.Google Scholar - 21.Gatewood, B. E.,
*Thermal Stresses*, McGraw-Hill, New York, 1957.Google Scholar - 22.Boley, B. A., and J. H. Weiner,
*Theory of Thermal Stresses*, Wiley, New York, 1960.Google Scholar - 23.Nowacke, W.,
*Dynamic Problems of Thermoelasticity*, Noordhoff International Publishing, Leyden, 1975.Google Scholar - 24.Lau, J. H., “Thermoelastic Problems for Electronic Packaging,”
*J. Hybrid Circuits*,**25**, May 1991, pp. 11–15.Google Scholar - 25.Nowacke, W.,
*Thermoelasticity*, 2d edn., Pergamon Press, New York, 1986.Google Scholar - 26.Kupradze, V. D.,
*Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity*, North-Holland, New York, 1976.Google Scholar - 27.Nowinski, J. L.,
*Theory of Thermoelasticity with Applications*, Sijthoff & Noordhoff, Sephin AAN Rijn, 1978.CrossRefGoogle Scholar - 28.Kovalenko, A. D.,
*Thermoelasticity*, Wolters-Norrdhoff, Groningen, 1969.Google Scholar - 29.Parkus, H.,
*Thermoelasticity*, Blaisdell, London, 1968.Google Scholar - 30.Boley, B. A.,
*Thermoinelasticity*, Springer-Verlag, New York, 1970.CrossRefGoogle Scholar - 31.Lau, J. H., S. J. Erasmus, and D. W. Rice, “Overview of Tape Automated Bonding Technology,”
*Electronic Materials Handbook*,*Vol. 1: Packaging*, ASM International, November 1989.Google Scholar - 32.Lau, J. H., D. W. Rice, and G. Harkins, “Thermal Stress Analysis of TAB Packagings and Interconnections,”
*IEEE Trans. Components*,*Hybrids*,*and Manufacturing Technology*,**13**(1), March 1990, pp. 183–188.Google Scholar - 33.Lau, J. H., S. J. Erasmus, and D. W. Rice, “An Introduction to Tape Automated Bonding Technology,” in
*Electronics Packaging Forum*, ed. J. E. Morris, Van Nostrand Reinhold, New York, 1991, pp. 1–83.CrossRefGoogle Scholar - 34.Lau, J. H., S. J. Erasmus, and D. W. Rice, “Overview of Tape Automated Bonding Technology,”
*Circuit World*,**16**(2), 1990, pp. 5–24.CrossRefGoogle Scholar - 35.Lau, J. H.,
*Handbook of Tape Automated Bonding*, Van Nostrand Reinhold, New York, 1992.Google Scholar - 36.Sternberg, E., and E. L. McDowell, “On The Steady-State Thermoelastic Problem For The Half-Space,”
*Quarterly J. Applied Mathematics*,**XIV**(4), 1957, pp. 381–398.Google Scholar - 37.Lau, J. H., “Thermoelastic Solutions for a Semi-Infinite Substrate with an Electronic Device,”
*J. Electronic Packaging*,*Trans. ASME*,**114**, September 1992, pp. 353–358.Google Scholar - 38.Sneddon, I. N., and F. J. Lockett, “On The Steady-State Thermoelastic Problem For The Half-Space and The Thick Plate,”
*Quarterly J. Applied Mathematics*,**XVIII**(2), 1960, pp. 145–153.Google Scholar - 39.Lau, J. H., “Thermoelastic Solutions for a Finite Substrate with an Electronic Device,”
*J. Electronic Packaging*,*Trans. ASME*,**113**, March 1991, pp. 84–88.CrossRefGoogle Scholar - 40.Fung, Y. C.,
*Foundations of Solid Mechanics*, Prentice-Hall, Englewood Cliffs, NJ, 1965.Google Scholar - 41.Boresi, A. P., and O. M. Sidebottom,
*Advanced Mechanics of Materials*, Wiley, New York, 1984.Google Scholar - 42.Gere, J. M., and S. P. Timoshenko,
*Mechanics of Materials*, 2d edn., PWS Engineering, Boston, MA, 1984.Google Scholar - 43.Timoshenko, S. P., and J. N. Goodier,
*Theory of Elasticity*, McGraw-Hill, New York, 1970.Google Scholar - 44.Lau, J. H., “Closed-Form Solutions for The Large Deflection of Curved Optical Glass Fibers Under Combined Loads,” to be published in
*J. Electronic Packaging*,**115**, June 1993.Google Scholar - 45.Suhir, E., “Effect of the Nonlinear Behavior of the Material on Two-Point Bending of Optical Glass Fibers,”
*J. Electronic Packaging*,**114**, June 1992, pp. 246–250.CrossRefGoogle Scholar - 46.Pan, H. H., “Non-linear Deformation of Flexible Ring,”
*Quarterly J. Mechanics and Applied Mathematics*,**XV**, 1962, pp. 402–412.Google Scholar - 47.Lau, J. H., “Large Deflection of Cantilever Beam,”
*J. Engineering Mechanics*,**107**, February 1981, pp. 259–264.Google Scholar - 48.Lau, J. H., “Large Deflections of Beam With Combined Loads,” J.
*Engineering Mechanics*,**108**, February 1982, pp. 180–185.Google Scholar - 49.Conway, H. D., “The Nonlinear Bending of Thin Circular Rods,”
*J. Applied Mechanics*,**23**, March 1956, pp. 7–10.Google Scholar - 50.
*ABAQUS Theory Manual*, Hibbitt, Karlsson and Sorensen, Inc., Providence, 1987.Google Scholar - 51.
*ABAQUS User’s Manual*, Hibbitt, Karlsson and Sorensen, Inc., Providence, 1987.Google Scholar - 52.Alexander, H., “A Constitutive Relation for Rubber-Like Materials,”
*Int. J. Engineering Science*,**6**, 1968, pp. 549–563.CrossRefGoogle Scholar - 53.Green, A. E., and J. E. Adkins,
*Large Elastic Deformations*, Oxford University Press, London, 1960.Google Scholar - 54.Green, A. E., and W. Zerna,
*Theoretical Elasticity*, 2d edn., Oxford University Press, London, 1968.Google Scholar - 55.Hart-Smith, L. J., and J. D. C. Crisp, “Large Elastic Deformations of Thin Rubber Membranes,”
*Int. J. Engineering Science*,**5**, 1967, pp. 1–24.CrossRefGoogle Scholar - 56.Mooney, M., “Theory of Large Elastic Deformation,”
*J. Applied Physics*,**11**, 1940, pp. 582–592.CrossRefGoogle Scholar - 57.Ogden, R. W., “Elastic Deformations of Rubberlike Solids,” in
*Mechanics of Solids*, ed. H. G. Hopkins and M. J. Sewell, Pergamon Press, Oxford, 1982, pp. 499–537.Google Scholar - 58.Shield, R. T., “Equilibrium Solutions in Finite Elasticity,”
*ASME J. Applied Mechanics*,**50**, 1983, pp. 1171–1180.CrossRefGoogle Scholar - 59.Smith, G. F., and R. S. Rivlin, “The Strain-Energy Function for Anisotropic Elastic Materials,”
*Trans. American Mathematical Society*,**88**, 1958, pp. 175–193.CrossRefGoogle Scholar - 60.Treloar, L. R. G.,
*The Physics of Rubber Elasticity*, 2d edn., Oxford University Press, London, 1958.Google Scholar - 61.Treloar, L. R. G., “The Elasticity and Related Properties of Rubbers,”
*Reports on Progress in Physics*,**36**, 1973, pp. 755–826.CrossRefGoogle Scholar - 62.Lau, J. H., and A. H. Jeans, “Nonlinear Analysis of Elastomeric Keyboard Domes,”
*J. Applied Mechanics, Trans. ASME*,**56**, December 1989, pp. 751–755.CrossRefGoogle Scholar - 63.Polukhin, P., S. Gorelik, and V. Vorontsov,
*Physical Principles of Plastic Deformation*, Mir, Moscow, 1983.Google Scholar - 64.Atkins, A. G., and Y. W. Mai,
*Elastic and Plastic Fractures*, Horwood, Chichester, 1985.Google Scholar - 65.Hill, R.,
*The Mathematical Theory of Plasticity*, Clarendon Press, Oxford, 1983.Google Scholar - 66.Thomas, T. Y.,
*Plastic Flow and Fracture in Solids*, Academic Press, New York, 1961.Google Scholar - 67.Johnson, W., and P. B. Meller,
*Engineering Plasticity*, Horwood, Chichester, 1983.Google Scholar - 68.Washizu, K.,
*Variational Methods in Elasticity and Plasticity*, Pergamon Press, Oxford, 1982.Google Scholar - 69.Gopinathan, V.,
*Plasticity Theory and Its Application in Metal Forming*, Wiley, New York, 1982.Google Scholar - 70.Mendelson, A.,
*Plasticity, Theory and Application*, Krieger, Malabar, FL, 1983.Google Scholar - 71.Lau, J. H., D. Rice, and S. Erasmus, “Thermal Fatigue Life of 256-Pin, 0.4 mm Pitch Plastic Quad Flat Pack (QFP) solder Joints,”
*Proc. 1st ASME/JSME Electronic Packaging Conference*, April 1992, pp. 855–863.Google Scholar - 72.Lau, J. H.,
*Solder Joint Reliability: Theory and Applications*, Van Nostrand Reinhold, New York, 1991.CrossRefGoogle Scholar - 73.Lau, J. H., and T. T. Lau, “Bending and Twisting of Pipes with Strain Hardening,”
*J. Pressure Vessel Technology*,*Trans. ASME*,**106**, May 1984, pp. 188–195.Google Scholar - 74.Lau, J. H., and C. K. Hu, “Nonlinear Stress Analysis of Curved Bars,”
*Proc. 5th ASCE Engineering Mechanics Conferences*, 1984, pp. 917–920.Google Scholar - 75.Cortez, R., E. Cutiongco, M. Fine, and D. Jeannotte, “Correlation of Uniaxial Tension-Tension, Torsion, and Multiaxial Tension-Torsion Fatigue Failure in a 63Sn-37Pb Solder Alloy,”
*Proc. 42nd IEEE Electronic Components and**Technology Conference*, May 1992, pp. 354–359.Google Scholar - 76.Malvern, L. E.,
*Introduction to the Mechanics of a Continuous Medium*, Prentice-Hall, Englewood Cliffs, NJ, 1969.Google Scholar - 77.Kennedy, A. J.,
*Processes of Creep and Fatigue in Metals*, Oliver and Boyd, New York, 1962.Google Scholar - 78.Gittus, J.,
*Viscoelasticity and Creep Fracture in Solids*, John Wiley-Halsted Press, New York, 1975.Google Scholar - 79.Evans, H. E.,
**Mechanics of Creep Fracture**, Elsevier Applied Science, New York, 1984.Google Scholar - 80.Evans, H. E., and B. Wilshire,
*Creep of Metals and Alloys*, The Institute of Metals, London, 1985.Google Scholar - 81.Conway, S. B.,
*Numerical Methods for Creep and Rupture*, Gordon and Breach, New York, 1967.Google Scholar - 82.Garofalo, F.,
*Fundamentals of Creep and Creep-Rupture in Metals*, The Macmillan Company, New York, 1965.Google Scholar - 83.Clauss, F. J.,
*Engineer’s Guide to High Temperature Materials*, Addison-Wesley, Reading, MA, 1969.Google Scholar - 84.Wilshire, B., and R. J. Owen,
*Recent Advances in Creep and Fracture of Engineering Materials and Structures*, Pineridge Press, Swansea, UK, 1982.Google Scholar - 85.Lubahn, J. D., and R. P. Felgar,
*Plasticity and Creep of Metals*, Wiley, New York, 1961.Google Scholar - 86.Sully, A. H.,
*Metallic Creep and Creep Resistant Alloys*, Interscience, New York, 1949.Google Scholar - 87.Ponter, A. R. S., and F. A. Leckie, “Constitutive Relationships for the Time Dependent Deformation of Metals,”
*J. Engineering Materials and Technology*,*Trans. ASME*,**98**, 1976, pp. 47–51.Google Scholar - 88.Miller, A. K., “An Inelastic Constitutive Model for Monotonic, Cyclic, and Creep Deformation,”
*J. Engineering Materials and Technology*,*Trans. ASME*,**98**, 1976, pp. 97–105.Google Scholar - 89.Hart, E. W., “Constitutive Relations for the Non-elastic Deformation of Metals,”
*J. Engineering Materials and Technology*,*Trans. ASME*,**98**, 1976, pp. 193–202.Google Scholar - 90.Perzyna, P., “The Constitutive Equations for Rate Sensitive Plastic Materials,”
*Quarterly J. Mechanics and Applied Mathematics*,**XX**, 1963, 321–332.Google Scholar - 91.Lau, J. H., and G. K. Listvinsky, “Bending and Twisting of Internally Pressurized Thin-Walled Cylinder With Creep,”
*J. Applied Mechanics, Trans. ASME*,**48**, June 1981, pp. 439–441.CrossRefGoogle Scholar - 92.Lau, J. H., “Bending of Circular Cylinder with Creep,” J. Engineering
*Mechanics Division, Proc. ASCE*,**107**, 1981, pp. 265–270.Google Scholar - 93.Lau, J. H., “Bending and Twisting of Pipe with Creep,”
*Int. J. Nuclear Engineering and Design*, June 1981, pp. 367–374.Google Scholar - 94.Lau, J. H., and T. T. Lau, “Creep of Pipes Under Axial Force and Bending Moment,”
*J. Engineering Mechanics Division, Proc. ASCE*,**108**, 1982, pp. 190–195.Google Scholar - 95.Lau, J. H., and T. T. Lau, “Deformation of Elbows With Creep,”
*Proc. 4th ASME National Congress on Pressure Vessel and Piping Technology*, June 1983.Google Scholar - 96.Lau, J. H., S. S. Jung, and T. T. Lau, “Creep of Thin-Wall Cylinder Under Axial Force, Bending, and Twisting Moments,”
*J*.*Engineering for Power, Trans. ASME*,**106**, 1984, pp. 79–83.CrossRefGoogle Scholar - 97.Lau, J. H., and C. K. Hu, “Creep of Thin-Wall Cylinder Under Combined Loads,”
*Proc. 5th ASCE Engineering Mechanics Conference*, 1984, pp. 917–920.Google Scholar - 98.Lau, J. H., and T. T. Lau, “Bending and Twisting of Pipes With Creep,”
*J. Pressure Vessel Technology, Trans. ASME*,**106**, May 1984, pp. 188–195.CrossRefGoogle Scholar - 99.Lau, J. H., and C. K. Hu, “Deformation of Curved Bars With Creep,”
*J. Engineering for Power, Trans. ASME*,**107**, 1985, pp. 225–230.CrossRefGoogle Scholar - 100.Lau, J. H., and T. T. Lau, “Creep of Pipes Under Axial Force and Twisting Moment,”
*J. Engineering Mechanics, Proc. ASCE*,**108**, 1982, pp. 174–179.Google Scholar - 101.Lau, J. H., “Creep of Solder Interconnects Under Combined Loads,” to be published in
*Proc. 43rd IEEE Electronic Components and Technology Conference*,June 1993.Google Scholar - 102.Schroeder, S. A., and M. R. Mitchell, “Torsional Creep Behavior of 63Sn-37Pb Solder,”
*Proc. 1st ASME/JSME Electronic Packaging Conference*, April 1992, pp. 649–653.Google Scholar