Advertisement

The Clinical Syndrome of Phosphate Depletion

  • Shaul G. Massry
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 103)

Abstract

There are 600–700 grams of phosphorus in the human body, with 85% of it in the skeleton. Only 600–700 mg or 1/1000 of total body phosphorus is found in the extracellular fluid. About 15% of body phosphorus is located in soft tissues, mainly in the form of intermediary carbohydrate, lipid and protein compounds. The amount of inorganic phosphorus in the cell is very small, but it is very important since it is this fraction which provides the source of phosphorus for the resynthesis of adenosine triphosphate, ATP, (1).

Keywords

Inorganic Phosphorus Serum Phosphorus Chronic Alcoholism Respiratory Alkalosis Phosphate Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krebs, H.: Rate limiting factors in cell respiration. CIBA Foundation Symposium on Regulation of Cell Metabolism. Little, Brown Publishers, Boston, pp. 1–10, 1959.Google Scholar
  2. 2.
    Betro, M.G., and Pain, R.W.: Hypophosphatemia and hyperphosphatemia in a hospital population. Brit. Med. J. 1: 273, 1972.PubMedCrossRefGoogle Scholar
  3. 3.
    Stein, J.H., Smith, W.O., and Ginn, E.: Hypophosphatemia in acute alcoholism. Am. J. Med. Sci. 252: 78, 1966.PubMedCrossRefGoogle Scholar
  4. 4.
    Bloom, W.L., and Flinchum, D.: Osteomalacia with pseudo- fractures caused by the ingestion of aluminum hydroxide. JAMA 174: 1327, 1960.Google Scholar
  5. 5.
    Lotz, M., Ney, R., and Bartter, F.C.: Osteomalacia and debility resulting from phosphorus depletion. Trans. Assoc. Amer. Physicians, 77: 281, 1964.Google Scholar
  6. 6.
    Abrams, D.E., Silcott, R.B., Terry, R., Berne, T.V., and Barbour, B.H.: Antacid induction of phosphate depletion syndrome in renal failure. Western J. Med. 120: 157, 1974.Google Scholar
  7. 7.
    Rapoport, S., Stevens, C.D., Engel, G.L., Ferris, E.P., and Logan, M.: The effect of voluntary overbreathing on the electrolyte equilibrium of arterial blood in man. J. Biol. Chem. 163: 411, 1946.PubMedGoogle Scholar
  8. 8.
    Okel, B.B., and Hurst, J.W.: Prolonged hyperventilation in man. Associated electrolyte changes and subjective symptoms. Arch. Intern. Med. 108: 757, 1961.PubMedCrossRefGoogle Scholar
  9. 9.
    Mostellar, M.E., and Tuttle, E.P., Jr.: The effects of alkalosis on plasma concentration and urinary excretion of inorganic phosphate in man. J. Clin. Invest. 43: 138, 1964.PubMedCrossRefGoogle Scholar
  10. 10.
    Franks, M., Berris, R.F., Kaplan, N.O., and Myers, G.P.: Metabolic studies in diabetic acidosis. I. The effect of early administration of dextrose. Arch. Intern. Med. 80: 739, 1947.CrossRefGoogle Scholar
  11. 11.
    Franks, M., Berris, R.F., Kaplan, N.O., Myers, G.P.: Metabolic studies in diabetic acidosis. II. The effect of the administration of sodium phosphate. Arch. Intern. Med. 81: 42, 1948.CrossRefGoogle Scholar
  12. 12.
    Silvis, S.E., and Paragas, P.D., Jr.: Fatal hyperalimentation syndrome. Animal studies. J. Lab. Clin. Med. 78: 918, 1971.PubMedGoogle Scholar
  13. 13.
    Silvis, S.E., and Paragas, P.D., Jr.: Parasthesias, weakness, seizures and hypophosphatemia in patients receiving hyperalimentation. Gastroenterol. 62: 513, 1972.Google Scholar
  14. 14.
    Lichtman, M.A., Miller, D.R., and Freeman, R.B.: Erythrocyte adenosine triphosphate depletion during hypophosphatemia in a uremic subject. N. Engl. J. Med. 280: 240, 1969.PubMedCrossRefGoogle Scholar
  15. 15.
    Lichtman, M.A., Miller, D.R., Cohen, J., Waterhouse, C.: Reduced red cell glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration, and increased oxygen affinity caused by hypophosphatemia. Ann. Intern. Med. 74: 562, 1971.PubMedGoogle Scholar
  16. 16.
    Travis, S.F., Sugarman, H.J., Rubergy, R.L., Dudrick, S.J., Delivoria-Papadopoulos, M., Miller, L.D., and Oski, F.A.: Alterations of red cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation. N. Engl. J. Med. 285: 763, 1971.PubMedCrossRefGoogle Scholar
  17. 17.
    Jacob, H.S., and Amsden, T.: Acute hemolytic anemia with rigid red cell hypophosphatemia. N. Engl. J. Med. 285: 1446, 1971.PubMedCrossRefGoogle Scholar
  18. 18.
    Klock, J.C., Williams, H.E., Mentzer, W.C.: Hemolytic anemia and somatic cell dysfunction in severe hypophosphatemia. Arch. Intern. Med. 134: 360, 1974.PubMedCrossRefGoogle Scholar
  19. 19.
    Territo, M.D., and Tanaka, K.R.: Hypophosphatemia in chronic alcoholism. Arch. Intern. Med. 134: 445, 1974.PubMedCrossRefGoogle Scholar
  20. 20.
    Craddock, P.R., Yawata, Y., Van Santen, L., Silverstadt, S., Silvis, S., and Jacob, H.S.: Acquired phagocyte dysfunction. A complication of the hypophosphatemia of parenteral hyper-alimentation. N. Engl. J. Med. 290: 1403, 1974.PubMedCrossRefGoogle Scholar
  21. 21.
    Yawata, Y., Hebbel, R.P., Silvis, S., Howe, R., and Jacob, H.: Blood cell abnormalities complicating the hypophosphatemia of hyperalimentation: Erythrocytes and platelet ATP deficiency associated with hemolytic anemia and bleeding in hyperalimented dog. J. Lab. Clin. Med. 84: 643, 1974.PubMedGoogle Scholar
  22. 22.
    Stoerk, H.C., and Carnes, W.H.: The relation of the dietary Ca: P ratio to serum Ca and to parathyroid volume. J. Nutr. 29: 43, 1945.Google Scholar
  23. 23.
    Slatopolsky, E., Calger, S., Pennell, J.P., Taggart, D.D., Canterbury, J.M. Reiss, E., and Bricker, N.S.: On the pathogenesis of hyperparathyroidism in chronic experimental renal insufficiency in the dog. J. Clin. Invest. 50: 492, 1971.PubMedCrossRefGoogle Scholar
  24. 24.
    Dominguez, J.H., Fray, R.W., and Leman, J., Jr.: Dietary phosphate deprivation in women and men. Effects of mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. J. Clin. Endocrinol. & Metab. 43: 1056, 1976.CrossRefGoogle Scholar
  25. 25.
    Tuller, M.A.: Myoglobinuria with or without drug usage. JAMA 217: 1868, 1971.Google Scholar
  26. 26.
    Knochel, J.P., Bilbrey, G.L., Fuller, T.J., and Carter, N.W.: The muscle cell in chronic alcoholism. The possible role of phosphate depletion in alcoholic myopathy. Ann. N.Y. Acad. Sci. 252: 274, 1975.PubMedCrossRefGoogle Scholar
  27. 27.
    Fuller, T.J., Carter, N.W., Barcenas, C., and Knochel, J.P.: Reversible experimental myopathy associated with phosphorus depletion. J. Clin. Invest. 57: 1019, 1976CrossRefGoogle Scholar
  28. 28.
    O’Connor, L.R., Wheeler, W.S., and Bethune, J.E.: Effect of hypophosphatemia on myocardial performance in man. N. Engl. J. Med. 297: 901, 1977.PubMedCrossRefGoogle Scholar
  29. 29.
    Fuller, R.J., Nichols, W.W., Brenner, B.J., and Peterson, J.C.: Effects of phosphorus depletion on left ventricular energy generation. In Homeostasis of Phosphate and Other Minerals, eds. Massry, S.G., Ritz, E., and Rapado, A., Plenum Publishing Co., New York, In Press, 1978.Google Scholar
  30. 30.
    Freeman, S., and McLean, F.C.: Experimental rickets. Blood and tissue changes in puppies receiving a diet very low in phos-horus, with and without vitamin D. Arch. Pathol. 32: 387, 1941.Google Scholar
  31. 31.
    Skikita, M., Tsurnfuji, S., and Ito, Y.: Adaptation in renal phosphorus excretion under the influence of parathyroids; a study of ureterally catheterized rats. Endocrinol. Jap. 9: 171, 1962.CrossRefGoogle Scholar
  32. 32.
    Kreusser, W.J., Kurokawa, K., Aznar, E., and Massry, S.G.: Phosphate depletion: Effect on renal inorganic phosphorus and adenine nucleotides, urinary phosphate and calcium, and calcium balance. Miner. Elect. Metab. 1: 30, 1978.Google Scholar
  33. 33.
    Cuisinier-Gleizes, P., Thomasset, M., Sainteny-DeLove, I., and Mathieu, H.: Phosphorus deficiency, parathyroid hormone, and bone resorption in the growing rat. Calcif. Tiss. Res. 20: 235, 1976.CrossRefGoogle Scholar
  34. 34.
    Kreusser, W.J., Kurokawa, K., Aznar, E., Sachtjen, E., and Massry, S.G.: Effect of phosphate depletion on magnesium homeostasis. J. Clin. Invest. 61: In press, 1978.Google Scholar
  35. 35.
    Barzel, U.S.: Parathyroid hormone, blood phosphorus, and acid-base metabolism. Lancet, 1: 1329, 1971.PubMedCrossRefGoogle Scholar
  36. 36.
    Gold, L.W., Massry, S.G., Arieff, A.I., and Coburn, J.W.: Renal bicarbonate wasting during phosphate depletion: A possible cause of altered acid-base homeostasis in hyperparathyroidism. J. Clin. Invest. 52: 2556, 1973.PubMedCrossRefGoogle Scholar
  37. 37.
    Massry, S.G., Kurokawa, K., Arieff, A.I., and Ben-Isaac, C.: Metabolic acidosis of hyperparathyroidism. Arch. Intern. Med. 134: 385, 1974.PubMedCrossRefGoogle Scholar
  38. 38.
    Emmett, M., Goldfarb, S., Agus, Z.S., and Narins, R.C.: The pathophysiology of acid-base changes in chronically phosphate-depleted rats. Bone kidney interaction. J. Clin. Invest. 59: 291, 1977.PubMedCrossRefGoogle Scholar
  39. 39.
    Coburn, J.W., and Massry, S.G.: Changes in serum and urinary calcium during phosphate depletion: Studies on mechanisms. J. Clin. Invest. 49: 1073, 1970.PubMedCrossRefGoogle Scholar
  40. 40.
    Day, H.G., and McCollum, E.V.: Mineral metabolism, growth, and symptomatology of rats on a diet extremely deficient in phosphorus. J. Biol. Chem. 130: 269, 1939.Google Scholar
  41. 41.
    Young, V.R., Lofgreen, G.P., and Luick, J.R.: The effects of phosphorus depletion and of calcium and phosphorus intake on the endogenous excretion of these elements by sheep. Brit. J. Nutr. 20: 795, 1966.PubMedCrossRefGoogle Scholar
  42. 42.
    Steele, T.H., Engle, J.E., Tanaka, Y., Lorenc, R.S., Dudgeson, K.L., and DeLuca, H.F.: On the phosphatemic action 1,25-dihydroxy vitamin D3. Amer. J. Physiol. 229: 489, 1975.Google Scholar
  43. 43.
    Steele, T.H., and DeLuca, H.F.: Influence of dietary phosphorus on renal phosphate reabsorption in the parathyroidectomized rats. J. Clin. Invest. 57: 867, 1976.PubMedCrossRefGoogle Scholar
  44. 44.
    Trohler, V., Bonjour, J.P., and Fleish, J.: Inorganic phosphate homeostasis: Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. J. Clin. Invest. 57: 264, 1976.PubMedCrossRefGoogle Scholar
  45. 45.
    Beck, N.: Effect of dietary phosphorus (P) intake on renal actions of parathyroid hormone (PTH) and cyclic AMP (cAMP). Proc. Amer. Soc. Nephrol. 9: 1, 1976.Google Scholar
  46. 46.
    Goldfarb, S., Westby, G.R., Goldberg, M., and Agus, Z.S.: Renal tubular effects of chronic phosphate depletion. J. Clin. Invest. 59: 770, 1977.PubMedCrossRefGoogle Scholar
  47. 47.
    Gold, L.W., Massry, S.G., and Friedler, R.M.: Effect of phosphate depletion on renal tubular reabsorption of glucose. J. Lab. Clin. Med. 89: 554, 1977.PubMedGoogle Scholar
  48. 48.
    Kreusser, W.J., Descoeudres, C., Oda, Y., Aznar, E., and Massry, S.G.: Effects of phosphate depletion (PD) on renal gluconeogenesis (GNG). Proc. Amer. Soc. Nephrol. 10: 90A, 1977.Google Scholar
  49. 49.
    Tanaka, Y., and DeLuca, H.F.: The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch. Biochem. Biophys. 154: 566, 1973.PubMedCrossRefGoogle Scholar
  50. 50.
    Hughes, M.R., Haussier, M.R., Werdegal, J., and Baylink, D.J.: Regulation of serum la, dihydroxyvitamin D3 by calcium and phosphate in the rat. Science, 190: 578, 1975.PubMedCrossRefGoogle Scholar
  51. 51.
    Ben-Isaac, C., Massry, S.G., Rosenfeld, S., Kleeman, C.R., and Bick, M.: Evidence for humoral factors responsible for the hypercalciuria of phosphate depletion. J. Clin. Invest. 53: 5a, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Shaul G. Massry
    • 1
  1. 1.Division of Nephrology and Department of MedicineThe University of Southern CaliforniaLos AngelesUSA

Personalised recommendations