Prostaglandins and Divalent Cation Metabolism

  • Michael A. Kirschenbaum
  • Charles R. Kleeman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 103)


When von Euler (1) first described the prostaglandins thirty years ago, he could not have imagined that these lipids would be implicated in so many physiologic roles. With the rediscovery of these lipids and the elucidation of their chemical structure by Bergstrom and Samuelsson (2), a considerable volume of information has been generated. The prostaglandins are a group of 20-carbon acidic lipids generally resembling prostanoic acid. They are derived from the enzymatic conversion of either linolenic acid (the 1-series) or arachidonic acid (the 2-series) (3,4). During their synthesis, numerous short-lived cyclic endoperoxide intermediates are formed which by themselves are frequently more active than the prostaglandins (5). Almost every cell in the body has the capacity to synthesize prostaglandins although in the adult, the major organs of synthesis are the renal medulla, seminal vesicles, and uterus. The prostaglandins that are synthesized in the microsomes are probably not stored by the cell (6), but released into the cytoplasm and eventually into the extracellular fluid. The lung, liver, and renal cortex among other tissues, have the enzymatic ability to degrade prostaglandins (7). Although dozens of prostaglandins, intermediates, and metabolites have been identified, prostaglandin-E2 (PGE2) and prostaglandin-F2∝ (PGF2∝) appear to be implicated as the active naturally occurring agents. The prostaglandins can be identified and measured by various techniques with considerable variation in sensitivity and specificity (8). These methods include gas chromatography and mass spectrometry, thin layer chromatography, radioimmunoassay, membrane receptor assay, and bioassay.


Medullary Thyroid Carcinoma Prostaglandin Synthesis Renal Medulla Immunoreactive Parathyroid Hormone Elevated Serum Calcium Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    von Euler, U.S.: On the specific vasodilating and plain muscle stimulating substances from accessory genital glands in man and certain animals. J. Physiol. 88: 213, 1937.Google Scholar
  2. 2.
    Bergstrom, S., Ryhage, R., Samuelsson, B., and Sjovall, J.: The structure of prostaglandin E, F, and F2. Acta. Chem. Scand. 16: 501, 1962.CrossRefGoogle Scholar
  3. 3.
    Bergstrom, S., Danielsson, H., and Samuelsson, B.: The enzymatic formation of prostaglandin E2 from arachidonic acid. Biochim. Biophys. Acta. 90: 207, 1964.CrossRefGoogle Scholar
  4. 4.
    Van Dorp, D.A., Beerthuis, R.K., Nugteren, D.H., and Vonkeman, H.: The biosynthesis of prostaglandins. Biochim. Biophys. Acta. 90: 204, 1964.CrossRefGoogle Scholar
  5. 5.
    Samuelsson, B. and Ramberg, M.: Role of endoperoxides in the biosynthesis and action of prostaglandins. In: Prostaglandin Synthetase Inhibitors, eds. H.J. Robinson and J.R. Vane, Raven Press, New York, 1974, p. 107–121.Google Scholar
  6. 6.
    Crowshaw, K.: The incorporation of {1–14C} arachidonic acid into the lipids of rabbit renal slices and conversion to prostaglandins E2 and F2«. Prostaglandins. 3: 607, 1973.PubMedCrossRefGoogle Scholar
  7. 7.
    Ferreira, S.H. and Vane, J.R.: Prostaglandins: their disappearance from and release into the circulation. Nature (Lond.). 216: 868, 1967.CrossRefGoogle Scholar
  8. 8.
    Frolich, J.C., Williams, W.M., Sweetman, B.J., Smigel, M., Carr, K., Hollifield, J.W., Fleisher, S., Nies, A.S., Frisk-Holmberg, M., and Oates, J.A.: Analysis of renal prostaglandin synthesis by competitive protein binding assay and gas chromatography - mass spectrometry. In: Advances in Prostaglandin and Thromboxane Research, Vol. 1, eds. B. Samuelsson and R. Paoletti, Raven Press, New York, 1976.Google Scholar
  9. 9.
    Golub, M., Zia, P., Matsuno, M., and Horton, R.: Metabolism of prostaglandins Al and E1 in man. J. Clin. Invest. 56: 1404, 1975.PubMedCrossRefGoogle Scholar
  10. 10.
    Venuto, R.C., O’Dorisio, T., Stein, J.H., and Ferris, T.F.: Uterine prostaglandin E secretion and uterine blood flow in the pregnant rabbit. J. Clin. Invest. 55: 193, 1975.Google Scholar
  11. 11.
    Berl, T. and Schrier, R.W.: The mechanism of effect of prostaglandin E1 on renal water excretion. J. Clin. Invest. 52: 463, 1973.PubMedCrossRefGoogle Scholar
  12. 12.
    Willis, A.L., Davison, P., Ramwell, P.W., Brocklehurst, W.E., and Smith, J.B.: Release and action of prostaglandins in inflammation and fever: Inhibition by anti-inflammatory and antipyretic drugs. In: Prostaglandins in Cellular Biology, eds. P.W. Ramwell and B.B. Pharriss, Plenum Press, New York, 1972, p. 227–259.CrossRefGoogle Scholar
  13. 13.
    Klein, D.C. and Raisz, L.G.: Prostaglandins: Stimulation of bone resorption in tissue culture. Endocrinology. 86: 1436, 1970.PubMedCrossRefGoogle Scholar
  14. 14.
    Franklin, R.B. and Tashjian, A.H.: Intravenous infusion of prostaglandin E2 raises plasma calcium concentration in the rat. Endocrinology. 97: 240, 1975.PubMedCrossRefGoogle Scholar
  15. 15.
    Goodson, J.M., Dewhirst, F.E., and Brunetti, A.: Prostaglandin EZZ levels and human periodontal disease. Prostaglandins. 6: 8 I, 1974.Google Scholar
  16. 16.
    Harris, M., Jenkins, M.U., Bennett, A., and Wills, M.R.: Prostaglandin production and bone resorption by dental cysts. Nature. 245: 213, 1973.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldhaber, P., Rabadjija, L., Beyer, W.R., and Kornhauser, G.: Bone resorption in tissue culture and its relevance to periodontal disease. J. Amer. Dent. Assoc. (Special Issue). 87: 1027, 1973.Google Scholar
  18. 18.
    Gomes, B.C., Hausmann, E., Weinfeld, N., and De Luca, C.: Prostaglandins: bone resorption stimulating factors released from monkey gingiva. Calcif. Tiss. Res. 19: 285, 1976.CrossRefGoogle Scholar
  19. 19.
    Feinblatt, J.D., Tai, L.-R., and Leone, R.G.: Secretion of a bone resorbing factor by chick thyroid glands in organ culture. Endocrinology. 99: 1363, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Tashjian, A.H., Voelkel, E.F., Levine, L., et al.: Evidence that the bone resorption-stimulating factor produced by mouse fibrosarcoma cells is prostaglandin E2: a new model for the hypercalcemia of cancer. J. Exp. Med. 136: 1329, 1972.PubMedCrossRefGoogle Scholar
  21. 21.
    Voelkel, E.F., Tashjian, A.H., Franklin, R., Wasserman, E., and Levine, L.: Hypercalcemia and tumor-prostaglandins: the VX2 carcinoma model in the rabbit. Metabolism. 24: 973, 1975.PubMedCrossRefGoogle Scholar
  22. 22.
    Seyberth, H.W., Segre, G.V., Morgan, J.L., Sweetman, B.J., Potts, J.T., and Oates, J.A.: Prostaglandins as mediators of hypercalcemia associated with certain types of cancer. N. Engl. J. Med. 293: 1278, 1975.PubMedCrossRefGoogle Scholar
  23. 23.
    Robertson, R.P., Baylink, D.J., Metz, S.A., and Cummings, K.B.: Plasma prostaglandin E in patients with cancer with and without hypercalcemia. J. Clin. Endocrinol. Metab. 43: 1330, 1976.Google Scholar
  24. 24.
    Dindogru, A., Gailani, S., Henderson, F.S., Wallace, H.J., and Fitzpatrick, J.: Indomethacin in hypercalcemia. Lancet. 1: 1218, 1975.Google Scholar
  25. 25.
    Ito, H., Sanada, T., Katayama, T., and Shimazaki, J.: Indomethacin-responsive hypercalcemia. N. Engl. J. Med. 293: 558, 1975.PubMedGoogle Scholar
  26. 26.
    Vogel, S.B., Enneking, W.F., and Thomas, W.C.: Effect of thyroparathyroidectomy in hypercalcemia associated with malignancy. Endocrinology. 80: 404, 1967.PubMedCrossRefGoogle Scholar
  27. 27.
    Gill, J.R., Frolich, J.C., Bowden, R.E., Taylor, A.A., Keiser, H.R., Seyberth, J., Hannsjorg, W., Oates, J.A., and Bartter, F.C.: Bartter’s syndrome: a disorder characterized by high urinary prostaglandins and a dependence of hyperreninemia on prostaglandin synthesis. Am. J. Med. 61: 43, 1976.PubMedCrossRefGoogle Scholar
  28. 28.
    Yu, J.H., Wells, H., Ryan, W.J., and Lloyd, W.S.: Effects of prostaglandins and other drugs on the cyclic AMP content of cultured bone cells. Prostaglandins. 12: 501, 1976.PubMedCrossRefGoogle Scholar
  29. 29.
    Kohlhardt, M., Bauer, B., Krause, H., and Fleckenstein, A.: Differentiation of transmembrane Na and Ca channels in mammalian cardiac fibers by the use of specified inhibitors. Pflueger Arch. 335: 309, 1972.CrossRefGoogle Scholar
  30. 30.
    Raisz, L.G. and Koolemans-Beynen, A.R.: Inhibition of bone collagen synthesis by prostaglandin E2 organ culture. Prostaglandins. 8: 377, 1974.PubMedCrossRefGoogle Scholar
  31. 31.
    Roos, B.A., Bundy, L.L., Miller, E.A., and Deftos, L.J.: Calcitonin secretion by monolayer cultures of human C-cells derived from medullary thyroid carcinoma. Endocrinology. 97: 39, 1975.PubMedCrossRefGoogle Scholar
  32. 32.
    Amer, M.A. and Marquis, N.R.: The effect of prostaglandins, epinephrine and aspirin on cyclic AMP phosphodiesterase activity of human blood platelets and their aggregation. In: Prostaglandins in Cellular Biology, eds. P.W. Ramwell and B.B. Pharris, Plenum Press, New York, 1972.Google Scholar
  33. 33.
    Johnson, M. and Ramwell, P.W.: Prostaglandin modification of membrane-bound enzyme activity: a possible mechanism of action. Prostaglandins. 3: 703, 1973.PubMedCrossRefGoogle Scholar
  34. 34.
    Hinman, J.W.: Prostaglandins. Ann. Rev. Biochem. 41: 161, 1972.PubMedCrossRefGoogle Scholar
  35. 35.
    Hamprecht, B., Jaffe, B.M., Philpott, A.W.: Prostaglandin production by neuroblastoma, glioma and fibroblast cell line. FEBS Lets. 36: 193, 1973.CrossRefGoogle Scholar
  36. 36.
    Dalton, C. and Hope, W.C.: Cyclic AMP regulation of PG bio-synthesis in fat cells. Prostaglandins. 6: 227, 1974.PubMedCrossRefGoogle Scholar
  37. 37.
    Burke, G., Chang, L., and Szabo, M.: Thyrotropin and cyclic nucleotide effects on prostaglandin levels in isolated thyroid cells. Science. 180: 872, 1973.PubMedCrossRefGoogle Scholar
  38. 38.
    Carsten, M.E. and Miller, J.D.: Effect of prostaglandins and oxytocin on calcium release from a uterine microsomal fraction. J. Biol. Chem. 252: 1576, 1977.PubMedGoogle Scholar
  39. 39.
    Moura, A.-M. and Simpkins, H.: The effects of hormones and prostaglandins on the calcium pools in cultured myocardial cells. Mol. Cell. Endocrinol. 5: 349, 1976.PubMedCrossRefGoogle Scholar
  40. 40.
    Ishizawa, M. and Miyazaki, E.: Calcium and the contractile response to prostaglandin in the smooth muscle of guinea-pig stomach. Experientia. 33: 376, 1976.CrossRefGoogle Scholar
  41. 41.
    Hilborn, D.A.: Serum stimulation of phosphate uptake into 3T3 cells. J. Cell. Physìol. 87: 111, 1975.CrossRefGoogle Scholar
  42. 42.
    Moncada, S., Higgs, E.A., and Vane, J.R.: Human arterial and venous tissues generate prostacyclin (prostaglandin X), a potent inhibitor of platelet aggregation. Lancet. 1: 18, 1977.PubMedCrossRefGoogle Scholar
  43. 43.
    Boelens, P.A., Norwood, W.K., and Kjellstrand, C.: Hypophosphatemia with muscle weakness due to antacids and hemodialysis. Am. J. Dis. Child. 120: 350, 1970.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Michael A. Kirschenbaum
    • 1
  • Charles R. Kleeman
    • 1
  1. 1.Department of MedicineUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations