Endocrine Regulation of Plasma Phosphate in Sheep Fetuses with Catheters Implanted in utero

  • J. P. Barlet
  • Marie-Jeanne Davicco
  • J. Lefaivre
  • J. M. Garel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 103)


Before term, in rodents (1, 2), ruminants (3, 4, 5, 6) and humans (7), phosphatemia is higher in the fetus than in the mother. This difference of concentration between both sides of the placenta is poorly understood. In rats, it has been demonstrated that the placental transfer of 32P increased between the 19th day of gestation and term (1). In the same time fetal phosphatemia increased from 8.75 to 9.97 mg/dl (2). Calcitonin injection in fetal rats (8) and in fetal monkeys (9) induced a significant hypocalcemia and hypophosphatemia in the fetus. In rat fetuses treated with parathyroid extract intravenously or subcutaneously calcemia was increased while phosphatemia was lower than in fetuses injected with the vehicle alone (10). In acute preparations of sheep fetuses, the intravenous infusion of parathyroid extract (0.1 I.U./kg/mn during 1 hr) increased promptly and significantly the renal phosphate-glomerular filtration rate clearance ratio, while the glomerular filtration rate, serum calcium, serum phosphate and filtered load of phosphate did not change significantly (4). In fact the endocrine regulation of fetal phosphatemia remains obscure.The purpose of this investigation was to study the effects of calcitonin, parathyroid hormone, 1α-hydroxycholecalciferol and 5,6 trans-25 hydroxycholecalciferol, injected intravenously in unstressed fetal lambs, on fetal and maternal phosphatemia, calcemia and magnesemia.


Endocrine Regulation Maternal Plasma Salmon Calcitonin Fetal Plasma Plasma Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Klem, K.K.:Placental transmission of 32P in late pregnancy and in experimental prolongation of pregnancy in rats. Acta Obstet. Gynecol. Scand. 35: 445, 1956.PubMedCrossRefGoogle Scholar
  2. (2).
    Garel, J.M.,and Pic, P.: Evolution of phosphatemia in the rat fetus during the late stages of gestation. Biol. Neonate 21: 369, 1972.PubMedCrossRefGoogle Scholar
  3. (3).
    Malan, A.J.: Studies in mineral metabolism. VIII. Comparison of phosphorus partition in the blood of calf foetus, sheep foetus, and lambs, with corresponding maternal blood. J. Agric. Sci. 18: 397, 1928.CrossRefGoogle Scholar
  4. (4).
    Smith, F.G., Tinglof, B.O., Meuli, J.,and Borden, M.: Fetal response to parathyroid hormone in sheep. J. Applied Physiol. 27: 276, 1969.Google Scholar
  5. (5).
    Mellor, D.J.,and Matheson, I.C.: Variations in the distribution of calcium, magnesium and inorganic phosphorus within chronically sheep conceptuses during the last eight weeks of pregnancy. Quarterly J. Exper. Physiol. 62: 55, 1977.Google Scholar
  6. (6).
    Buckle, R.M., Smith, F.G.,and Alexander, D.P.: Assessment of parathyroid glandular activity in the foetus. In: Calcium, Parathyroid Hormone and the calcitonins, Talmage, R.V. and Munson, P.L. Eds., Excerpta Medica, Amsterdam, p. 197, 1972.Google Scholar
  7. (7).
    Mull, J.W.,and Bill, A.H.: Inorganic phosphorus content of prenatal and post-partum serum. Amer. J. Obstet. Gynecol. 23: 807, 1932.Google Scholar
  8. (8).
    Garel, J.M., Milhaud, G.,and Jost, A.: Action hypocalcémiante et hypophosphatémiante de la thyrocalcitonine chez le foetus de rat. C.R. Acad. Sci. Paris série D 267: 344, 1968.Google Scholar
  9. (9).
    Reynolds, W.A., Pitkin, R.M.,and Wezeman, F.H.: Calcitonin effects in primate pregnancy. Amer. J. Obstet. Gynecol. 122: 212, 1975.Google Scholar
  10. (10).
    Garel, J.M., Pic, P.,and Jost, A.: Action de la parathormone chez le foetus de Rat. Ann. Endocr. 32: 253, 1971.Google Scholar
  11. (11).
    Mellor, D.J., and Matheson, I.C.: Chronic catheterization of the aorta and umbilical vessels of foetal sheep. Res. Vet. Sci. 18: 221, 1975.PubMedGoogle Scholar
  12. (12).
    Bawden, J.W., Wolkoff, A.S.,and Flowers, C.E.: Maternal-fetal blood calcium relationships in sheep. Obstet. Gynecol. 25: 548, 1965.PubMedGoogle Scholar
  13. (13).
    Delivoria-Papadopoulos, M., Battaglia, F.C., Bruns, P.D., and Meschia, G.: Total, protein-bound, and ultrafiltrable calcium in maternal and fetal plasma. Amer. J. Physiol. 213: 263, 1967.Google Scholar
  14. (14).
    Symonds, H.W., Sansom, B.F.,and Twardock, A.R.: The measurement of the transfer of calcium and phosphorus from foetus to dam in the sheep using a whole body counter. Res. Vet. Sci. 13: 272, 1972.PubMedGoogle Scholar
  15. (15).
    Braithwaite, G.D., Glascock, R.F.,and Riazuddin, Sh.: Studies on the transfer of calcium across the ovine placenta and incorporation into the foetal skeleton. Br. J. Nutr. 27: 417, 1972.PubMedCrossRefGoogle Scholar
  16. (16).
    Garel, J.M.,and Barlet, J.P.: The effects of calcitonin and parathormone on plasma magnesium levels before and after birth in the rat. J. Endocr. 61: 1, 1974.PubMedCrossRefGoogle Scholar
  17. (17).
    Littledike, E.T., Arnaud, C.D.,and Whipp, C.S.: Calcitonin secretion in the ovine, porcine and bovine fetuses. Proc. Soc. Exp. Biol. Med. 139: 428, 1972.Google Scholar
  18. (18).
    Milhaud, G.,and Moukhtar, M.S.: Antagonistic and synergistic actions of thyrocalcitonin and parathyroid hormone on the levels of calcium and phosphate in the rat. Nature (London) 211: 1186, 1966.CrossRefGoogle Scholar
  19. (19).
    Ramberg, C.F., Delivoria-Papadopoulos, M., Crandall, E.D., and Kronfeld, D.S.: Kinetic analysis of calcium transport across the placenta. Amer. J. Physiol. 35: 682, 1973.Google Scholar
  20. (20).
    Twardock, A.R.,and Austin, M.K.: Calcium transfer in the perfused guinea-pig placenta. Amer. J. Physiol. 219: 540, 1970.PubMedGoogle Scholar
  21. (21).
    Parsons, J.A.,and Robinson, C.J.: Calcium shift into bone causing transient hypocalcemia after injection of parathyroid hormone. Nature (London) 230: 581, 1971.CrossRefGoogle Scholar
  22. (22).
    Alexander, D.P., and Nixon, D.A.: Effect of parathyroid extract in foetal sheep. Biol. Neonate 14: 117, 1969.CrossRefGoogle Scholar
  23. (23).
    Holick, M.F., Garabedian, M.,and De Luca, H.F.: 5,6 trans-25 hydroxycholecalciferol: vitamin D analog active on intestine of anephric rats. Science 176: 1247, 1972.PubMedCrossRefGoogle Scholar
  24. (24).
    Holick, M.F., Tavela, T.E., Holick, S.A., Schnoes, H.K., De Luca, H.F.,and Gallagher, B.M.: Synthesis of 1α-hydroxy 6-3H vitamin D3 and its metabolism to lα, 25-hydroxy 6-3H vitamin D3 in the Rat. J. Biol. Chem. 251: 1020, 1976.PubMedGoogle Scholar
  25. (25).
    Garel, J.M., Care, A.D.,and Barlet, J.P.: A radioimmunoassay for ovine calcitonin: an evaluation of calcitonin secretion during gestation, lactation and foetal life. J. Endocr. 62: 497, 1974.PubMedCrossRefGoogle Scholar
  26. (26).
    Ross, R., Care, A.D., Pickard, D.W., Peacock, M.,and Robinson, J.S.: Plasma 25-hydroxy vitamin D levels in the sheep foetus ands neonate. J. Endocr. 71: 84P, 1976.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. P. Barlet
    • 1
  • Marie-Jeanne Davicco
    • 1
  • J. Lefaivre
    • 1
  • J. M. Garel
    • 2
  1. 1.I.N.R.A., TheixBeaumontFrance
  2. 2.Physiologie du DéveloppementUniversité P. et M. CurieParisFrance

Personalised recommendations