On a Class of Non-Markovian Processes and Its Application to the Theory of Shot Noise and Barkhausen Noise

  • S. K. Srinivasan


Stochastic processes arising from overlapping pulses have been the center of interest for many years in many physical problems involving noise. A naive approach to such problems consists in assuming the statistical independence of pulses generated at different times and then studying the response function which is a sum of determinate functions of the random times at which the pulses have been generated. However, in the case of noise problems, there is ample experimental evidence to indicate the crude nature of the approximation. In fact, the pulses have a fairly good correlation, particularly those whose times of generation are not separated by very large intervals of time. To be precise, we may say that the stochastic process governing the distribution of the pulse numbers is essentially non-Markovian in character, and earlier studies relating to the study of the response function are based on the simple Markovian nature of a process. Recently, we have attempted to remove the restriction and explain a certain class of noise problems on the basis of a non-Markovian model governing the pulse generation (see Refs. 1–3). The present discussion will be confined to the particular model and we shall see how a number of physical phenomena and, in particular, shot noise and Barkhausen noise can be explained in terms of this model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. K. Srinivasan, On a Class of Non-Markovian Processes, I.I. T. preprint (1962).Google Scholar
  2. 2.
    S. K. Srinivasan, Nuovo Cimento 38: 979 (1965).CrossRefGoogle Scholar
  3. 3.
    S. K. Srinivasan and R. Vasudevan, On a Class of Non-Markovian Processes Associated with Correlated Pulse Trains and Their Application to Barkhausen Noise, I. I. T. Research Report No. 4 (1965).Google Scholar
  4. 4.
    L. Takacs, On secondary processes generated by a Poisson process and their applications in physics, Acta Math. Acad. Sci. Hung. 5: 203–236 (1954).MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. S. Bartlett, Stochastic Processes, Cambridge University Press (1955), p. 54.Google Scholar
  6. 6.
    E. N. Rowland, The theory of shot effect 11, Proc. Camb. Phil. Soc. 33: 344–358 (1937).ADSCrossRefGoogle Scholar
  7. 7.
    A. Ramakrishnan, Stochastic processes relating to particles distributed in a continuous infinity of states, Proc. Camb. Phil. Soc. 46: 595 (1950).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    N. Campbell, Proc. Camb. Phil. Soc. 15: 117 (1909).Google Scholar
  9. 9.
    J. E. Moyal, J. Roy. Statist. Soc. B 11: 150 (1949).Google Scholar
  10. 10.
    S. K. Srinivasan and P. M. Mathews, Proc. Nat. Inst. Sci. (India) 22 A: 369 (1956).Google Scholar
  11. 11.
    A. W. Hull and N. H. Williams, Phys. Rev. 25: 147 (1925).ADSCrossRefGoogle Scholar
  12. 12.
    J. B. Johnson, Phys. Rev. 26: 71 (1925).ADSCrossRefGoogle Scholar
  13. 13.
    E. B. Moullins, Proc. Roy. Soc. 147 A: 100 (1934).ADSCrossRefGoogle Scholar
  14. 14.
    E. N. Rowland, Proc. Camb. Phil. Soc. 33: 344 (1937).ADSCrossRefGoogle Scholar
  15. 15.
    E. B. Moullins, Spontaneous Fluctuations of Voltage, Clarendon Press, Oxford (1938).Google Scholar
  16. 16.
    E. N. Rowland, Proc. Camb. Phil. Soc. 34: 329 (1938).ADSCrossRefGoogle Scholar
  17. 17.
    P. Mazetti, Nuovo Cimento 25: 1322 (1962); 31: 38 (1964).CrossRefGoogle Scholar
  18. 18.
    R. Hanbury-Brown and R. Q. Twiss, Phil. Mag. 45: 663 (1954); Proc. Roy. Soc. (London) 242 A: 300 (1957); 243 A: 291 (1957).ADSCrossRefGoogle Scholar
  19. 19.
    L. Mandel, Proc. Phys. Soc. 72: 1037 (1958).ADSCrossRefGoogle Scholar
  20. 20.
    L. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys. Soc. 84: 435 (1964).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Kikuchi, J. Chem. Phys. 23: (1955).Google Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • S. K. Srinivasan
    • 1
  1. 1.Indian Institute of TechnologyMadrasIndia

Personalised recommendations