The Higher Resonances in the Pion-Nucleon System

  • G. Takeda


We shall first discuss the experimental situation regarding the higher resonances in the pion-nucleon system and then consider various theoretical approaches that have been made to explain them. The first resonance N 1 in the \(J = \frac{3}{2}, T = \frac{3}{2}\) state is well understood and we shall not speak about it here.


Interference Term High Resonance Partial Wave Amplitude Riemann Sheet Complex Energy Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.N. Diddens et al., Phys. Rev. Letters 10: 262 (1963).ADSCrossRefGoogle Scholar
  2. 2.
    E.P. Winger, Phys. Rev. 98: 145 (1955).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    A.M. Bincer and B. Sakita, Phys. Rev. 129: 1905 (1963).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    W.R. Frazer and J. Fulco, Phys. Rev. 119: 1420 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    S.C. Frautschi and J.D. Walecka, Phys. Rev. 120: 1486 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    R.F. Peierls, Phys. Rev. Letters 6: 641 (1961).ADSCrossRefGoogle Scholar
  7. 7.
    K. Itabashi, M. Kato, K. Nakagawa, and G. Takeda, Progr. Theoret. Phys. 24: 529 (1960).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J. Kurz, J. Schwarz, and R.D. Tripp, Phys. Rev. 130: 2481 (1963).ADSCrossRefGoogle Scholar
  9. 9.
    B.C. Barish, R.J. Kurz, V. Perez-Mendez, and J. Solomon, Bull. Am. Phys. Soc. 7: 280 (1962).Google Scholar
  10. 10.
    P.V. Landshoff and S.B. Treiman, Phys. Rev. 127: 649 (1962).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • G. Takeda
    • 1
  1. 1.Tohoku UniversitySendaiJapan

Personalised recommendations