Laser-Produced Gaseous Deuterium Plasmas

  • Arthur H. Guenther
  • Winston K. Pendleton
Conference paper


A brief summary of the theory of laser-produced plasmas is presented. Experimental measurements of the properties of laser-produced, low pressure (100–600 Torr) deuterium plasmas are discussed and interpreted using the best available theories. These measurements include, laser intensity breakdown threshold versus pressure, plasma growth rate, laser-plasma absorption and boundary interactions, spatial and temporal electron density distribution, and temporal electron temperature. A Time Variable Reflectivity (TVR) ruby laser having an output of up to 2 joules in 4 nanoseconds (FWHM) was used in this investigation.


Shock Wave Electron Temperature Laser Intensity Blast Wave Ruby Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. D. Maker, R. W. Terhune, and C. M. Savage, Quantum Electronics III, 1559, (1964).ADSGoogle Scholar
  2. 2.
    G. A. Askar’ysn, M. S. Rabinovich, M. M. Savchenko, and V. K. Stepanov, JETP Letters, 5, 121, (1967).ADSGoogle Scholar
  3. 3.
    C. DeMichelis, IEEE Journal of Quantum Electronics, QE-5, No. 4, 188, (1969).ADSCrossRefGoogle Scholar
  4. 4.
    I.K. Krasyuk, P.P. Pashinin, and A.M. Prokhorov, JETP, 31, 860, (1970).ADSGoogle Scholar
  5. 5.
    N.K. Berezhetshaya, G.S. Voronov, G.A. Delone, and G.K. Piskova, JETP, 31, 403, (1970)ADSGoogle Scholar
  6. 6.
    L.V. Keldysh, JETP, 20, 1307, (1965).MathSciNetGoogle Scholar
  7. 7.
    V. Chalmeton, J. de Physique, 30, 687, (1969).CrossRefGoogle Scholar
  8. 8.
    Blanc and Guyot, Ninth International Conference on Ionization Phenomena in Gases, Bucharest, (1969).Google Scholar
  9. 9.
    F. Morgan, L.R. Evans, and C.G. Morgan, private communication September 1970. Address: Dept. of Physics, University College of Swansea, Swansea, Wales.Google Scholar
  10. 10.
    Ya. B. Zel’Dovich, and Yu. P. Raizer, JETP, 20, 772, (1965).Google Scholar
  11. 11.
    P.E. Nielsen, G.H. Canavan, and S.D. Rockwood, Proceedings of the IEEE, 709, (April, 1971).Google Scholar
  12. 12.
    Yu. P. Raizer, Uspekhi, 8,650, (1966)Google Scholar
  13. 13.
    A.J. Alcock, C. DeMichelis, and M.C. Richardson, IEEE Journal of Quantum Electronics, QE-6, 662, (1970)ADSGoogle Scholar
  14. 14.
    L.R. Evans, and C.G. Morgan, Physical Review Letters, 22, 1099, (1969).ADSCrossRefGoogle Scholar
  15. 15.
    V.V. Korobkin, S.L. Mandel’shtam, P.P. Pashinin, A.V. Prokhindeev, A.M. Prokhorov, N.K. Sukhodrev, M. Ya. Shchelev JETP, 26, (1968), 79.ADSGoogle Scholar
  16. 16.
    Ya. B. Zeldovich, A.S. Kompaneets, Theory of Detonation, (1960).Google Scholar
  17. 17.
    Yu. P. Raizer, JETP Letters 7, 55, (1968)ADSGoogle Scholar
  18. 18.
    M.M. Litvak, D.F. Edwards, IaEEE Journal of Quantum Electronics, QE-2, 486, (1966).ADSCrossRefGoogle Scholar
  19. 19.
    A. Sakurai, Journal of the Physical Society of Japan, 8, 9, 662, 256, (1953), (1954).Google Scholar
  20. 20.
    G.A. Hardway, A.H. Guenther, A.K. Graf, Annals of the New York Academy of Sciences, 168, 440, (1970)ADSCrossRefGoogle Scholar
  21. 21.
    R.W. Minck, and W.G. Rado, Physics of Quantum Electronics, 527, (1966)Google Scholar
  22. 22.
    J.L. Bobin, C. Canto, G.F. Floux, J. Reuss, and P. Veyrie IEEE International Quantum Electronics Conference, Miami (1968)Google Scholar
  23. 23.
    R.V. Wick, Ph.D. Thesis, Pennsylvania State University, (1966)Google Scholar
  24. 24.
    G.G. Dolgov, and S.L. Mandel’shtam, Zh. Eksperim i. Teor. Fiz, 24, 691, (1953)Google Scholar
  25. 25.
    R.Z. Alpher and D.R. White, Physics of Fluids, 2, 162, (1959)ADSCrossRefGoogle Scholar
  26. 26.
    Jr. L. Spitzer, Physics of Fully Ionized Cases, 2nd Ed. Wiley Interscience, (1962)Google Scholar
  27. 27.
    Landolt-Bornstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, 6th Ed., Vol. II, No. 8, Optical Constants, Berlin, Springer-Verlag,(1962).Google Scholar
  28. 28.
    W. C. Marlow and D. Bershader, Physical Review, 133, A629, (1964).ADSCrossRefGoogle Scholar
  29. 29.
    R. E. Brooks, L. O. Heflinger, and R. F. Wuerker, IEEE Journal of Quantum Electronics, QE-2, 275, (1966).ADSCrossRefGoogle Scholar
  30. 30.
    H. M. Smith, Principles of Holography, New York, Wiley-Interscience, (1969).Google Scholar
  31. 31.
    F. B. Hildebrand, Methods of Applied Mathematics, 440, (1952).Google Scholar
  32. 32.
    H. E. Fettis, Mathematics of Computation, XVIII, 491, (1964).MathSciNetCrossRefGoogle Scholar
  33. 33.
    E. H. Beckner, Journal of Applied Physics, 37, 4944, (1966).ADSCrossRefGoogle Scholar
  34. 34.
    B. L. Henke, R. L. Elgin, R. E. Lent, and R. B. Ledingham, Advances in X-Ray Analysis, 13, (1967).Google Scholar
  35. 35.
    K. Büchl, K. Hohka, R. Wienecke, and S. Witkowski, Physics Letters, 26A, 248, (1968).ADSGoogle Scholar
  36. 36.
    C. Smith, Air Force Weapons Laboratory Technical Report (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • Arthur H. Guenther
    • 1
  • Winston K. Pendleton
    • 1
  1. 1.Air Force Weapons LaboratoryKirtland AFBAlbuquerqueUSA

Personalised recommendations