Fusion Neutron and Soft X-Ray Generation in Laser Assisted Dense Plasma Focus

  • R. A. Shatas
  • T. G. Roberts
  • H. C. Meyer
  • J. D. Stettler


The Langmuir frequency of the dense plasma focus matches closely the CO2 laser frequency; consequently, a strong absorption is expected within the volume of contained plasma. For thermo-nuclear radiation effects studies, laser assisted plasma focus can be employed for fusion neutron or soft X-ray pulse generation. In the latter case, high-Z material is laser-injected into the nascent focus, and plasma cooling by enhanced X-ray radiation is compensated by laser heating. Laser to X-ray energy conversion efficiencies near 50% are feasible. Numerical calculations for ff, fb,bb and total radiation for 5% Cu or Fe injection into focus to enhance the X-ray yield are presented for electron temperatures from 0.5 to 10 keV. Contrary to the X-ray generation, estimates of increase in neutron yield depend upon model assumed for dense focus. Furthermore, at electron temperatures in excess of 1 keV, the critical electron density must be maintained and the anomalous absorption invoked to obtain the laser energy absorption in a single pass through focus. Estimates for the threshold of the anomalous absorption are presented. Most of the calculations were performed in the context of the single fluid boiler model, although estimates for the X-ray enhancement are model independent. The required laser energies of 102 to 103 J per 10−7 sec pulse are obtainable from a segmented cylindrical electron-beam preionized CO2 laser device.


Plasma Focus Laser Heating Plasma Focus Device Fusion Neutron Dense Plasma Focus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Linhart, Very High Density Plasmas for Thermonuclear Fusion, Nucl. Fus. 10, 211–234 (1970).CrossRefGoogle Scholar
  2. 2.
    Heinrich Hora, Application of Laser Produced Plasmas for Controlled Thermonuclear Fusion, in Laser Interaction and Related Plasma Phenomena, H. J. Schwarz and H. Hora, eds. (Plenum Press, N. Y., 1971), p. 427.Google Scholar
  3. 3.
    J. W. Daibler, A. Hertzberg, and C. E. Wittliff, Laser-Generated Implosions, Phys. Fluids 9, 617–619 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    S.W. Mead, Plasma Production with a Multibeam Laser System, Phys. Fluids 13, 1510–1518 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    N. G. Basov, O. N. Krokhin and G. V. Slizkov, Heating of Laser Plasmas for Thermonuclear Fusion, Preprint #132, Lebedev Physical Institute, Acad. Sci. USSR (1971).Google Scholar
  6. 6.
    N. G. Basov, O. N. Krokhin, G. V. Slizkov, S. I. Fedotov and A. S. Shikanov, Powerful Laser Installation with the Successive-Parallel Amplifying System for Plasma Heating, Preprint #123, Lebedev Physical Institute, Acad. Sci. USSR (1971).Google Scholar
  7. 7.
    Joseph W. Mather, Formation of a High Density Deuterium Plasma Focus, Phys. Fluids 8, 366–377 (1965).ADSCrossRefGoogle Scholar
  8. 8.
    Joseph W. Mather and Paul J. Bottoms, Characteristics of the Dense Plasma Focus Discharge, Phys. Fluids 11, 611–618 (1968).ADSCrossRefGoogle Scholar
  9. 9.
    R. A. Shatas, T. G. Roberts, H. C. Meyer, and J. D. Stettler, CO2 Laser Assisted Neutron Generation, Bull. Amer. Phys. Soc. 15, 1308 (1970).Google Scholar
  10. 10.
    Romas A. Shatas, John D. Stettler, Harry C. Meyer, and Thomas G. Roberts, Soft X-Rays from a Laser-Heated Dense Plasma Focus, J. Appl. Phys. 42 5884–5886 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    M. H. Dazey, H. L. L. van Paassen and V. Josephson, Electrode Metal Effects in a Deuterium Plasma Z-Pinch Device, J. Appl. Phys. 41, 3545–3546 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    Everet H. Beckner, Production and Diagnostic Measurements of KiloVolt High Density Deuterium, Helium and Neon Plasmas, J. Appl. Phys. 37, 4944–4952 (1966).ADSCrossRefGoogle Scholar
  13. 13.
    Everet H. Beckner, Pulsed, High Intensity Source of Soft X Rays, Rev. Sci. Instr. 38, 507–511 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    H. L. L. van Paassen, R. H. Vandre and R. Stephen White, X Ray Spectra from Dense Plasma Focus Devices, Phys. Fluids 13, 2606–2612 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    C. Patou, A. Simonet and J. P. Watteau, Measured Anisotropics of the Plasma Focus Neutron Emission Compared with Proposed Mechanisms, Phys. Lett. 29A, 1–2 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    M. J. Bernstein, D. A. Meskan and H. L. L. van Paassen, Space, Time and Energy Distributions of Neutrons and X Rays from a Focused Plasma Discharge, Phys. Fluids 12, 2193–2202 (1969).ADSCrossRefGoogle Scholar
  17. 17.
    V. P. Dyachenko and V. S. Imshennik, Plasma Focus and the Neutron Emission Mechanism in a Z Pinch, Zh. Exper. Theor. Fiz. 56, 1766–1777 (1969); Sov. Phys. — JETP 29, 947–948 (1969).Google Scholar
  18. 18.
    M. J. Bernstein and F. Hai, Evidence for Nonthermonuclear Neutron Production in a Plasma Focus Discharge, Phys. Lett. 31A, 317–318 (1970).ADSCrossRefGoogle Scholar
  19. 19.
    M. J. Bernstein, Deuteron Acceleration and Neutron Production in Pinch Discharges, Phys. Rev. Lett. 24, 724–727 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    M. J. Bernstein and F. Hai, Evidence for Neutron Production via Enhanced Resistivity in a Plasma Focus, Phys. Rev. Letters 25, 641–642 (1970.ADSCrossRefGoogle Scholar
  21. 21.
    M. J. Bernstein, Acceleration Mechanism for Neutron Production in Plasma Focus and Z Pinch Discharges, Phys. Fluids 13, 2858–2866 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    J. H. Lee, D. S. Loebbaka and C. B. Roos, Hard X Ray Spectrum of a Plasma Focus, Plasma Phys. 13, 347–349 (1971).ADSCrossRefGoogle Scholar
  23. 23.
    A. Bernard, A. Coudeville and J. P. Watteau, Neutron Yield of a Focus Discharge in Various Experiments, Phys. Lett. 33A, 477–478 (1970).ADSCrossRefGoogle Scholar
  24. 24.
    M. J. Bernstein, C. M. Lee and F. Hai, Time Correlations of X Ray Spectra with Neutron Emission from a Plasma Focus Discharge, Phys. Rev. Lett. 27, 844–847 (1971).ADSCrossRefGoogle Scholar
  25. 25.
    T. D. Butler, I. Henins, F. C. Jahoda, J. Marshall and R. L. Morse, Coaxial Snowplow Discharge, Phys. Fluids 12, 1904–1916 (1969).ADSCrossRefGoogle Scholar
  26. 26.
    G. G. Comisar, Hydromagnetic Instabilities in the Dense Plasma Focus, Phys. Fluids 12, 1000–1007 (1969).ADSCrossRefGoogle Scholar
  27. 27.
    R. E. Dunway and J. A. Phillips, Neutron Generation from Straight Pinches, J. Appl. Phys. 29, 1137–1143 (1958).ADSCrossRefGoogle Scholar
  28. 28.
    P. O. Morgan et al., Proc. 3rd Europ. Conf Fusion and Plasma Physics, p. 118 (Utrecht, 1968).Google Scholar
  29. 29.
    N. V. Filippov and T. I. Filippova, Phenomena Associated with the Buildup of a Noncylindrical Focussed Z Pinch, Plasma Physics and Controlled Nuclear Fusion Research (Culham Conf. Proc.), Vol. 2, 405–416 (IAEA, Vienna, 1966).Google Scholar
  30. 30.
    D. E. Potter, Numerical Studies of the Plasma Focus, Phys. Fluids 14, 1911–1924 (1971).ADSCrossRefGoogle Scholar
  31. 31.
    P. Guillaneux, C. Patou and G. Tonon, Laser Driven Axial Flow Pinch in a Dense Plasma Focus, Phys. Lett. 32A, 370–371 (1970).ADSCrossRefGoogle Scholar
  32. 32.
    Thomas P. Wright, Early-Time Model of Plasma Expansion, Phys. Fluids 14, 1905–1910 (1971).ADSCrossRefGoogle Scholar
  33. 33.
    George C. Vlases, Heating of Pinch Devices with Lasers, Phys. Fluids 14, 1287–1289 (1971).ADSCrossRefGoogle Scholar
  34. 34.
    David W. Gregg and Scott J. Thomas, Kinetic Energies of Ions Produced by Laser Giant Pulses, J. Appl. Phys. 37, 4313–4316 (1966).ADSCrossRefGoogle Scholar
  35. 35.
    See, e.g., George Bekefi, Radiation Process in Plasmas (Wiley, N.Y., 1966), Ch. 3, Emission and Absorption from Binary Encounters.Google Scholar
  36. 36.
    Hans R. Griem, Plasma Spectroscopy (McGraw-Hill, N.Y., 1964), Ch. 6, Equilibrium Relations and Ch. 8, Radiative Energy Losses.Google Scholar
  37. 37.
    See, e.g., Lyman Spitzer, Jr., Physics of Fully Ionized Gases, 2nd ed. (Interscience, N.Y., 1962).Google Scholar
  38. 38.
    L. A. Artsimovich, Controlled Thermonuclear Reactions, transl. from 2nd edition in Russian (Gordon and Breach, N.Y., 1964), pg. 105.Google Scholar
  39. 39.
    P. K. Kaw and J. M. Dawson, Laser-induced Anomalous Heating of a Plasma, Phys. Fluids 12, 2586–2591 (1969).ADSCrossRefGoogle Scholar
  40. 40.
    K. Nishikawa, Parametric Excitation of Coupled Waves — I General Formulation, Jour. Phys. Soc. Japan 24 916–922 (1968); II Parametric Plasmon-Photon Interaction, ibid. 24, 1152–1158 (1968).ADSCrossRefGoogle Scholar
  41. 41.
    L. A. Artsimovich, op. cit. pg. 41.Google Scholar
  42. 42.
    D. J. DuBois and M. V. Goldman, Radiation-Induced Instability of Electron Plasma Oscillations, Phys. Rev. Letters 14, 544–546 (1960); Parametrically Excited Plasma Fluctuations, Phys. Rev. 164, 207–222 (1967).MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Wolfgang Lotz, Ionization Potentials of Atoms and Ions from Hydrogen to Zinc, J. Opt. Soc. Amer. 57, 873–878 (1967).ADSCrossRefGoogle Scholar
  44. 44.
    M. J. Bernstein and G. G. Comisar, X Ray Production in Laser Heated Plasmas, J. Appl. Phys. 41, 729–733 (1970).ADSCrossRefGoogle Scholar
  45. 45.
    J. Bruneteau, E. Fabre, H. Lamain and P. Vasseur, Experimental Investigation of the Production and Containment of a Laser Produced Plasma, Phys. Fluids 13, 1795–1801 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • R. A. Shatas
    • 1
  • T. G. Roberts
    • 1
  • H. C. Meyer
    • 1
  • J. D. Stettler
    • 1
  1. 1.U.S. Army Missile CommandRedstone ArsenalAlabamaUSA

Personalised recommendations