Anomalous Absorption of Intense Radiation

  • W. L. Kruer
  • J. M. Dawson
Conference paper


Anomalous heating of a plasma by an electric field oscillating near the plasma frequency is considered. The large field excites the oscillating two-stream and the ion-acoustic decay instabilities. Numerical simulation of these instabilities has confirmed the linear theory for their growth and has shown that when the instabilities saturate a strong anomalous heating occurs. This heating results in the production of energetic electrons. A simple nonlinear theory gives results in reasonable agreement with the numerical calculations. These predictions could be applied to laboratory experiments.


Wave Energy Plasma Oscillation External Driver Pump Field Intense Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. K. Kaw and J. M. Dawson, Phys. Fluids 12, 2586 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    W. L. Kruer, P. K. Kaw, J. M. Dawson, and C. Oberman Phys. Rev. Letters 24, 987 (1970); W. L. Kruer and J. M. Dawson, Phys. Rev. Letters 25, 1174 (1970); For anomalous heating by a large transverse field at ~ 2 ωpe, see W. L. Kruer and J. M. Dawson, Phys. Fluids 14, 1003 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    Simulations of the anomalous heating by very large pump fields have been carried out by J. DeGroot and J. Katz at the Lawrence Radiation Laboratory (Livermore, California).Google Scholar
  4. 4.
    I. R. Gekker and O. V. Sizukhin, ZhETF Pis. Red. 9, 408 (1969) [JETP Lett. 9, 243 (1969)].ADSGoogle Scholar
  5. 5.
    P. K. Kaw, E. Valeo, and J. M. Dawson, Phys. Rev. Letters 25, 430 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    H. P. Eubank, Phys. Fluids 14, (1971).Google Scholar
  7. 7.
    H. Hendel and T. K. Chu (private communication).Google Scholar
  8. 8.
    H. Dreicer, D. Henderson, and J. Ingraham, Phys. Rev. Letters (to be published).Google Scholar
  9. 9.
    J. W. Shearer (private communication).Google Scholar
  10. 10.
    R. Cohen and J. D. Whitehead, J. Geophys. Res. 75, 6439 (1970); F. W. Perkins and P. K. Kaw, J. Geophys. Res. 76, 282 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    A. Wong (private communication).Google Scholar
  12. 12.
    J. M. Dawson, C. G. Hsi, and R. Shanny, in Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1969) Vol. I, p. 735; W. L. Kruer and J. M. Dawson, presented at the Third Conference on Numerical Simulation of Plasmas, Stanford, Calif. (1969).Google Scholar
  13. 13.
    B. Rosen, W. Kruer, and J. M. Dawson, presented at the Fourth Conference on Numerical Simulation of Plasmas, Washington, D. C. (1970).Google Scholar
  14. 14.
    C. K. Birdsall and D. Fuss, J. Comp. Phys. 3, 494 (1969); R. Morse and C. Nielsen, Phys. Fluids 12, 2418 (1969); J. P. Boris and K. V. Roberts, J. Comp. Phys. 4, 552 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    J. Byers and M. Grewal, Phys. Fluids 13, 1819 (1970); J. Denavit and W. L. Kruer, Phys. Fluids 14, 1782 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    C. K. Birdsall and J. M. Dawson, in Computers and Their Role in Physical Science, edited by S. Fernbach and A. Taub (Gordon and Breach, New York, 1970) p. 247.Google Scholar
  17. 17.
    V. P. Silin, ZhETF 48, 1679 (1965), [JETP 21, 1127 (1965).Google Scholar
  18. 18.
    K. Nishikawa, J. Phys. Soc. Japan 24, 916, 1152 (1968); J.R. Sanmartin, Phys. Fluids 13, 1533 (1970).ADSCrossRefGoogle Scholar
  19. 19.
    S. Aihara, S. Takamura, and K. Takayama, Nagoya University (Japan) Institute of Plasma Physics Report No. IPPJ-93 (1970).Google Scholar
  20. 20.
    J. M. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962); 6, 394 (1963).MathSciNetADSCrossRefMATHGoogle Scholar
  21. 21.
    E. Valeo and C. Oberman have a systematic kinetic theory treatment of this problem for pump fields near threshold and for Te ~ few Ti. They then find that scattering of the unstable plasma oscillations by ion fluctuations is the dominant physical process for the saturation of the instability (private communication).Google Scholar
  22. 22.
    V. V. Pustovalov and V. P. Silin ZhETF 59, 2215 (1970).Google Scholar
  23. 23.
    J. M. Dawson and R. Shanny, Phys. Fluids 11, 1506 (1968).ADSCrossRefMATHGoogle Scholar
  24. 24.
    E. S. Weibel, Phys. Rev. Letters 2, 83 (1959).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • W. L. Kruer
    • 1
  • J. M. Dawson
    • 1
  1. 1.Plasma Physics LaboratoryPrinceton UniversityPrincetonUSA

Personalised recommendations