Advertisement

Dynamics of a Resistive Plasmoid in a Magnetic Field

  • Dilip K. Bhadra
Conference paper

Abstract

The behavior of a plasma produced by irradiation of a solid target “by a laser in the absence of a magnetic field has been discussed by Basov and Krokhin,1 Engelhardt,2 Dawson,3 Hora,4 Ascoli-Bartoli, DeMichelis, and Mazzucato,5 and Haught and Polk.6 The general behavior of the plasma produced by Haught and Polk appears to be describable in terms of Dawson’s simple hydrodynamic theory. Such a simple hydrodynamic model has been used by Bhadra7 to estimate the effect of a magnetic field on the expansion of a plasmoid, including the effects of finite resistivity. A moderate amount of resistivity superposes upon the collisionless solution a slow diffusion of plasma across the magnetic field. Without resistivity, the expanding plasma bounces repeatedly off the magnetic field in periodic fashion. With some resistivity, at each bounce the plasma penetrates a little deeper into the field because of the diffusion.

Keywords

Magnetic Field Shock Wave Angular Momentum Shock Front Strong Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. G. Bosov and O. N. Krokhin, in Proceedings of the Conference on Quantum Electronics (Dunod Cie., Paris, 1963) Vol. 2, p. 1373.Google Scholar
  2. 2.
    A. Engelhardt, Bull. Am. Phys. Soc. 9, 305 (1964).Google Scholar
  3. 3.
    J. Dawson, Phys. Fluids 7, 981 (1964).ADSCrossRefGoogle Scholar
  4. 4.
    H. Hora, Institut fur Plasmaphysik, Report No. 6/23 (1964).Google Scholar
  5. 5.
    U. Ascoli-Bartoli, C. deMichelis, and E. Mazzucato, in Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1966) Vol. II, p. 941.Google Scholar
  6. 6.
    A. F. Haught and D. H. Polk, Phys. Fluids 9, 2047 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    D. K. Bhadra, Phys. Fluids 11, 234 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    A. F. Haught, D. H. Polk, and W. J. Fader, Phys. Fluids 13, 2842 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    W. J. Fader, Phys. Fluids, 11, 2200 (1968); I. B. Bernstein and W. J. Fader, Phys. Fluids 11, 2209 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967).Google Scholar
  11. 11.
    L. I. Sedov, Similarily and Dimensional Methods in Mechanics (Academic Press, New York, 1959); A. S. Kompaneets, Sov. Phys.-Doklady 5, 146 (1960).Google Scholar
  12. 12.
    M. G. Haines, Advances in Physics, Vol. 14, p. 167 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    M. G. Haines, Phys. Letters 6, 313 (1963).ADSCrossRefGoogle Scholar
  14. 14.
    R. S. Scorer, Sci. J. 2,46 (1966).Google Scholar
  15. 15.
    J. M. Leblanc and J. R. Wilson, Astrophys. J. 161, 541 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • Dilip K. Bhadra
    • 1
  1. 1.Gulf General Atomic CompanySan DiegoUSA

Personalised recommendations