Interactions of Laser-Produced Plasmas with Background Gases

  • John A. Stamper
  • Stephen O. Dean
  • Edgar A. McLean


A laser-produced plasma (referred to hereafter as a laser-plasma) has such a high initial pressure that its expansion into a background gas produces a variety of interesting interactions. There has been particular interest recently in collision-free ionion interactions (e.g., heating and momentum transfer) between interstreaming plasmas. Such interactions, occurring between the expanding laser-plasma and a background plasma depend on the state of the initial laser-plasma so that a study of these interactions must begin with the laser-plasma. For example, the laser-plasma emits energetic photons which ionize the background gas. We found also, surprisingly, that large magnetic fields can be generated in the laser-plasma.1 These spontaneous magnetic fields are convected outward where they affect interactions with the background plasma. The spontaneous magnetic fields are considered in some detail after discussing interactions between the laser-plasma and background. The discussion is motivated by experimental work being carried on by the authors at the Naval Research Laboratory (NRL).


Laser Radiation Momentum Transfer Detonation Wave Blast Wave Naval Research Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Stamper, K. Papadopoulos, R. N. Sudan, S. O. Dean and E. A. McLean and J. M. Dawson, Phys. Rev. Lett. 26, 1012 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. II, p. 652, Academic Press, N.Y. (1967).Google Scholar
  3. 3.
    E. A. McLean, A. W. Ali, J. A. Stamper and S. O. Dean, Bull. Am. Phys. Soc. 15, 1411 (1970).Google Scholar
  4. 4.
    J. M. Dawson and C. R. Oberman, Phys. Fluids 5, 517 (1962).MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    H. Hora, Garching Report IPP-6127 (2nd Print.), Sept. 1964.Google Scholar
  6. 6.
    L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd Ed., Interscience, N.Y. (1964), p. 133.MATHGoogle Scholar
  7. 7.
    P. Kaw, J. Dawson, W. Kruer, C. Oberman and E. Valeo, Princeton University PPL Report MATT-819, (1970).Google Scholar
  8. 8.
    S. I. Braginskii, Chapter in Review of Plasma Physics, Vol. I, M. A. Leontovich, Ed. (Consultants Bureau, New York, 1965), p. 211.Google Scholar
  9. 9.
    E. Everhart, R. J. Carbone and G. Stone, Phys. Rev. 98. 1045 (1955).ADSCrossRefGoogle Scholar
  10. 10.
    S. O. Dean, E. A. McLean, J. A. Stamper and H. R. Griem, Phys. Rev. Lett. 27, 487 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. P. Raizer, Sov. Phys. Uspekhi 8, 650 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    T. E. Stringer, Plasma Physics (Journal of Nuclear Energy, Part C) 6, 267 (1964).ADSCrossRefGoogle Scholar
  13. 13.
    K. Papadopoulos, R. C. Davidson, J. M. Dawson, I. Haber, D. Hammer, N. A. Krall and R. Shanny, Phys. Fluids 14, 849 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    Reference 6, pg. 135.Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • John A. Stamper
    • 1
  • Stephen O. Dean
    • 1
  • Edgar A. McLean
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations