Intense Electron Emission from Laser Produced Plasmas

  • G. Siller
  • K. Büchl
  • H. Hora


Measurements are reported in which laser pulses are used to produce plasmas at tantalum targets biased as cathode against an anode by a voltage UA = 30 to 200 kV. The electron emission currents during 100 nsec are a few hundred amperes up to 1 kA. The brightness of the emitted electron beams is more than a hundred times better than in beams generated from comparable field emission sources. The energy spread at 100 kV anode voltage is less than 800 eV. The measured high electron currents cannot be explained by classical thermionic emission because space charge effects permit currents a factor of 10-4 less than observed. We suggest that self-focusing filaments are created by the laser at the ends of which the nonlinear force preaccelerates the electron in the space-charge free surface region of the plasma up to some keV energy. With such initial velocities the electrons in vacuum are not restricted by space-charge effects. Thus model also explains the independence of the emission current J of the focusing, the linear continuation of the measured dependence of J on UA and the slope of J on the laser power P by a P3/4 law.


Laser Power Space Charge Electron Emission Emission Current Space Charge Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Lichtman and J.F. Ready, Phys.Rev.Lett. 10, 342 (1963).ADSCrossRefGoogle Scholar
  2. 2.
    C. M. Verber and A.M. Adelman, Battelle Techn. Rev. 14, (7), 3 (1965)Google Scholar
  3. 3.
    J.F. Ready, J. Appl. Phys. 36, 462 (1965); Phys. Rev. 137A, 620 (1965); A.J. Alcock, H. Motz and D. Walsh, Quantum Electronics, 3rd Int. Congr. Paris 1963 (P. Grivet and N. Bloembergen Eds.) Dunod Paris 1964, Vol. II, p. 1687.ADSCrossRefGoogle Scholar
  4. 4.
    R.E. Honig, Appl. Phys. Lett. 3, 8 (1963).ADSCrossRefGoogle Scholar
  5. 5.
    R.E. Honig, Laser Interaction and Related Plasma Phenomena, (H. Schwarz and H. Hora Eds.) Plenum Press New York 1971, p. 85.Google Scholar
  6. 6.
    G. Bourrabier, T. Consoli and L. Slama, Phys. Lett. 23, 236 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    G. Siller, K. Büchl and E. Buchelt, Max-Planck-Institut für Plasmaphysik, Rpt. 012, 3/100 (1969).Google Scholar
  8. 8.
    C. Andelfinger, K. Büchl, E. Buchelt, W. Ott, G. Siller, Proceedings Electron, Ion and Laser Beam Technology, 4th Int. Conf. Los Angeles, May 1970 (R. Bakish, Ed.) The Electrochem. Soc., New York 1970, p. 3.Google Scholar
  9. 9.
    V. I. Veksler, G.I. Budker and Ya.B. Fainberg, CERN Symp. on Accelerators, 1956; see Symp. Electron Ring Accelerators, Febr. 1968, UCLR-18103.Google Scholar
  10. 10.
    F. Winterberg, Phys. Rev. 174, 212 (1968); M.V. Babykin, E.K. Zavoiskii, A.A. Ivanov, L.I. Rudakov, Proc. 4th Int. Conf. Controlled Thermonuclear Fusion, Madison, June 1971, IAEA, Vienna 1971.ADSCrossRefGoogle Scholar
  11. 11.
    W.I. Linlor, Appl. Phys. Lett. 3, 210 (1963); Energetic Ions Produced by Laser Pulses, Laser Interaction and Related Plasma Phenomena, (H. Schwarz and H. Hora Eds.) Plenum 1971, p. 173.ADSCrossRefGoogle Scholar
  12. 12.
    G. Siller, E. Buchelt and H.B. Schilling, Max-Planck-Institut für Plasmaphysik, Report 0/7 (1971).Google Scholar
  13. 13.
    P. Görlich, H. Hora and W. Macke, Exp. Tech. Phys. 5, 217 (1957); Jenaer Jahrb. 1957, p. 91; P. Görlich, and H. Hora, Optik 15, 116 (1958).Google Scholar
  14. 14.
    H. Hora and H. Müller, Z. Physik 164, 359 (1964).ADSCrossRefGoogle Scholar
  15. 15.
    W. Klose (private communication) see ref. 14.Google Scholar
  16. 16.
    A. Sommerfeld and H. Bethe, Handbuch der Physik, (A. Scheel Ed.) Springer Berlin 1953, Vol. 24/2; C. Herring and M.H. Nicols, Rev. Mod. Phys. 21, 266 (1949).Google Scholar
  17. 17.
    H. Hora, Application of Laser Produced Plasmas for Controlled Thermonuclear Fusion, in Laser Interaction and Related Plasma Phenomena (H. Schwarz and H. Hora Eds.) Plenum New York 1971, p. 437.Google Scholar
  18. 18.
    H. Rothe and W. Kleen, Grundlagen und Kennlinien der Elektronenröhren, Akad. Verlagsges. Leipzig 1953, p. 21; Henry F. Ivey, Advances in Electronics and Electron Physics (L. Marton, Ed.) Acad. Press New York 1954, Vol. 6, p. 137.Google Scholar
  19. 19.
    H.G. Möller and F. Detlefs, Jb. drahtl. Telegraphie und Telephonie 27, 74 (1926).Google Scholar
  20. 20.
    H. Hora, D. Pfirsch and A. Schlüter, Z. Naturforschg. 22a, 278 (1967); A. Schlüter, Plasma Physics 10, 471 (1968); H. Hora, Phys. Fluids 12, 182 (1969).ADSGoogle Scholar
  21. 21.
    H. Hora, Nonlinear Effect of Expansion of Laser Produced Plasmas, Laser Interaction and Related Plasma Phenomena, (H. Schwarz and H. Hora, Eds.) Plenum 1971, p. 383; Opto-Electronics 2, 201 (1970).Google Scholar
  22. 22.
    L.C. Steinhauer and H.G. Ahlstrom, Phys. Fluids 13, 1103 (1970).ADSCrossRefGoogle Scholar
  23. 23.
    V.V. Korobkin and A.J. Alcock, Phys. Rev. Lett. 21, 1433 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • G. Siller
    • 1
  • K. Büchl
    • 1
  • H. Hora
    • 1
    • 2
  1. 1.Max-Planck-Institut für PlasmaphysikEuratom AssociationGarchingGermany
  2. 2.Rensselaer Polytechnic InstituteUSA

Personalised recommendations