Lipids and Slow Viruses: Comparison of Measles and SSPE Virions

  • R. W. Ledeen
  • C. A. Miller
  • J. E. Haley
  • C. S. Raine
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 68)


Slow virus diseases have attracted growing interest in recent years owing to recognition of their role in certain nervous system disorders and possible implication in multiple sclerosis. As with the sphingolipidoses, significant alterations in lipid composition occur in these conditions but the nature and origin of the changes are fundamentally different. Some are the direct consequence of demyelination while other changes, such as those involving gangliosides, have a less certain origin. Alterations among the glycosphingolipids might be anticipated in view of repeated findings (4,5,16,17) that virally transformed cells develop abnormal patterns of these constituents. A study of this phenomenon in slow virus conditions could be useful in elucidating the complex interactions between these atypical infectious agents and the host cell.


Sialic Acid Measle Virus Subacute Sclerosing Panencephalitis Standard Particle Nervous System Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht, P., and Schumacher, H. P., Markers for measles virus. I. Physical properties, Arch. ges. Virusforsch. 36, 23 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    Baringer, J.R. and Griffith, J.S., Experimental measles virus encephalitis. A light, phase, fluorescence and electron microscopic study, Lab. Invest. 23, 335 (1970).PubMedGoogle Scholar
  3. 3.
    Blough, H.A., and Tiffany, J.M., Lipids in viruses, Adv. Lipid Res. 11, 267 (1973).Google Scholar
  4. 4.
    Brady, R.O., Fishman, P.H., Biosynthesis of glycolipids in virus-transformed cells, Biochim.Biophys. Acta 355, 121 (1974).PubMedGoogle Scholar
  5. 5.
    Brady, R.O., and Mora, P.T., Alterations in ganglioside pattern and synthesis in SV40-and polyoma virus-transformed mouse cell lines, Biochim. Biophys. Acta 218, 308 (1970).Google Scholar
  6. 6.
    Burnstein, T., Swango, L.J., and Byington, D.P., Non-specific brain inhibitor against measles virus, Arch, ges. Virusforsch. 34, 396 (1971).CrossRefGoogle Scholar
  7. 7.
    Chiarina, A., and Norrby, E., Separation and characterization of products of two measles variants, Arch. Res. Virusforsch, 29, 205 (1970).CrossRefGoogle Scholar
  8. 8.
    Choppin, P.W., and Compans, R.W., Reproduction of Paramyxovirus, in Comprehensive Virology, Vol. 4, (H. Fraenkel-Conrat and R.R. Wagner, eds.) New York and London, Plenum Press (1975) pp. 95–178.CrossRefGoogle Scholar
  9. 9.
    Choppin, P.W., Klenk, H.-D., Compans, R.W., and Caliguiri, L.A., The parainfluenza virus SV5 and its relationship to the cell membrane in “Perspectives in Virology”, Vol, VII (M. Pollard, ed.) New York, Academic Press (1971) pp. 127–158.Google Scholar
  10. 10.
    Connolly, J.H., Allen, I.V., Hurwitz, L.J., and Millar, J.H.D., Measles-virus antibody and antigen in subacute sclerosing panencephalitis, Lancet I, 542 (1967).CrossRefGoogle Scholar
  11. 11.
    Cumings, J.N., Some biochemical considerations regarding different forms of demyelination, in “Mechanisms of Demyelination”, (A.S. Rose and C.M. Pearson, eds.) New York, McGraw Hill, Inc. (1963) pp. 58–71.Google Scholar
  12. 12.
    Gajdusek, C.J., Slow virus diseases of the central nervous system, Amer. J. clin. Path. 56, 320 (1971).Google Scholar
  13. 13.
    Gajdusek, D.C., and Gibbs, C.J., Subacute and chronic disease caused by atypical infections with unconventional viruses in aberrant hosts, Perspectives in Virol., 8, 279 (1973).Google Scholar
  14. 14.
    Greenham, L., Ferguson, M. and Peacock, D., SSPE measles virus: non-productive and productive infection in Vero cells and suckling mice, Med. Microbiol. & Immunol. 160, 201 (1974).CrossRefGoogle Scholar
  15. 15.
    Hagberg, B., Hultquist, G., Ohman, R., and Svennerholm, L., Congenital amaurotic idiocy, Acta Paed. Scand. 54, 116 (1965).CrossRefGoogle Scholar
  16. 16.
    Hakomori, S., and Murakami, W.T., Glycolipids of hamster fibroblasts and derived malignanttransformed cell lines, Proc. Natl. Acad. Sci. 59, 254 (1968).PubMedCrossRefGoogle Scholar
  17. 17.
    Hakomori, S., Teather, C., and Andrews, H., Organization difference of cell surface “hematoside” in normal and virally transformed cells, Biochem. Biophys. Res. Comm. 33, 563 (1968).PubMedCrossRefGoogle Scholar
  18. 18.
    Hall, W.W., and Martin, S.J., Structure and function relationships of the envelope of measles virus, Med. Microbiol. & Immunol. 160, 143 (1974).CrossRefGoogle Scholar
  19. 19.
    Horta-Barbosa, L., Fuccillo, D.A., Sever, J.L., and Zeman, W., Subacute sclerosing panencephalitis: Isolation of measles virus from a brain biopsy, Nature 221, 974 (1969).PubMedCrossRefGoogle Scholar
  20. 20.
    Igarashi, M., Schaumburg, H.H., Powers, J., Kishimoto, Y., Kolodny, E., and Suzuki, K., Fatty acid abnormality in adrenoleukodystrophy, J.Neurochem. in press.Google Scholar
  21. 21.
    Klenk, H.-D., and Choppin, P.W., Lipids of plasma membranes of monkey and hamster kidney cells and of parainfluenza virions grown in these cells, Virology 38, 255 (1969).PubMedCrossRefGoogle Scholar
  22. 22.
    Klenk, H.-D., and Choppin, P.W., Plasma membrane lipids and parainfluenza virus assembly, Virology 40, 939 (1970).PubMedCrossRefGoogle Scholar
  23. 23.
    Klenk, H.-D., and Choppin, P.W., Glycolipid content of vesicular stomatitis virus grown in baby hamster kidney cells, J. Virol. 7, 416 (1971).PubMedGoogle Scholar
  24. 24.
    Landsberger, F.R., Compans, R.W., Choppin, P.W., and Lenard, J., Organization of the lipid phase in viral membranes. Effects of independent variation of the lipid and the protein composition, Biochem. 12, 4498 (1973).CrossRefGoogle Scholar
  25. 25.
    Ledeen, R., Salsman, K., and Cabrera, M., Gangliosides in subacute sclerosing leukoencephalitis: isolation and fatty acid composition of nine fractions, J. Lipid Res. 9, 129 (1968).PubMedGoogle Scholar
  26. 26.
    Ledeen, R.W., Yu, R.K., and Eng, L.F., Gangliosides of human myelin: sialosylgalactosylceramide (G7) as a major component, J. Neurochem. 21, 829 (1973).PubMedCrossRefGoogle Scholar
  27. 27.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193, 269 (1951).Google Scholar
  28. 28.
    Miller, C.A., and Fields, B.N., Biochemical analysis of measles and SSPE viruses (abst.) J. Neuropath. Exp. Neurol, in press.Google Scholar
  29. 29.
    Miller, C.A., Raine, C.S., and Fields, B.N., Comparative biochemical analysis of measles and SSPE viruses. In preparation.Google Scholar
  30. 30.
    Miller, C.A., Raine, C.S., and Fields, B.N., Biochemical characterization of measles virus after Concanavalin A purification, In preparation.Google Scholar
  31. 31.
    Norrby, E., Subacute sclerosing panencephalitis and measles virus, Ann, clin. Res. 5, 288 (1973).Google Scholar
  32. 32.
    Norton, W.T., Poduslo, S.E., and Suzuki, K., Subacute sclerosing leukoencephalitis, J. Neuropath, and Exptl. Neurol. 25, 582 (1966).CrossRefGoogle Scholar
  33. 33.
    Numazaki, J., and Karzon, D., Density separable fractions during growth of measles virus, J. Immun. 97, 458 (1966).PubMedGoogle Scholar
  34. 34.
    Payne, F.E., and Baublis, J.V., Measles virus strains isolated from SSPE patients, Internat.Virol. (Proc. 2nd Internat. Cong. for Virol., Budapest), Vol. 2, p. 202, Basel: Karger (1972).Google Scholar
  35. 35.
    Raine, C.S., Feldman, L.A., Sheppard, R.D., Bornstein, M.B., Ultrastructure of measles virus in cultures of hamster cerebellum, J. Virol. 4, 169 (1969).PubMedCrossRefGoogle Scholar
  36. 36.
    Raine, C.S., Feldman, L.A., Sheppard, R.D., and Bornstein, M.B., Subacute sclerosing panencephalitis virus in cultures of organized central nervous tissue, Lab. Invest. 28, 627 (1973).PubMedGoogle Scholar
  37. 37.
    Schluederberg, A., Chavanick, S., Lipman, M.B., and Carter, C., Comparative molecular weight estimates of measles and subacute sclerosing panencephalitis virus structural polypeptides by simultaneous electrophoresis in acrylamide gel slabs, Biochem. Biophys. Res, Comm. 58, 647 (1974).CrossRefGoogle Scholar
  38. 38.
    Suzuki, K., Ganglioside patterns of normal and pathological brains, inInborn Disorders of Sphingolipid Metabolism” (S.M. Aronson and B.W. Volk, eds.), Oxford and New York, Pergamon Press, Inc., (1967) pp. 215–230.Google Scholar
  39. 39.
    Suzuki, K., and Chen, G., Chemical studies on Jakob-Creutzfeldt disease, J, Neuropathol. & Exptl. Neurol. 25, 396 (1966).CrossRefGoogle Scholar
  40. 40.
    ter Meulem, V., Katz, M., and Müller, D., Subacute sclerosing panencephalitis: a review, Curr. Top. Microbiol. Immun. 57, 1 (1972).CrossRefGoogle Scholar
  41. 41.
    Tourtellotte, W.W., Packer, J.A., Herndon, R.M., and Cuadros, C.V., subacute sclerosing panencephalitis: brain immunoglobulin-G, measles antibody and albumin, Neurol. 18, 117 (1968).Google Scholar
  42. 42.
    Walker, D.L., Persistent viral infection in cell cultures, in “Medical and Applied Virology” (M. Sanders, and E.H. Lennette, eds.) St. Louis, Warren H. Green, Inc. (1968) pp. 99–110.Google Scholar
  43. 43.
    Wender, M., Psychiat. Neurol. 141, 381 (1961).CrossRefGoogle Scholar
  44. 44.
    Yeh, J., Characterization of virus-specific RNAs from subacute sclerosing panencephalitis virusinfected CV-1 cells, J. Virol. 12, 962 (1973).PubMedGoogle Scholar
  45. 45.
    Yu, R.K., and Ledeen, R.W., Gas-liquid chromatographic assay of lipid-bound sialic acids: measurement of gangliosides in brain of several species, J. Lipid Res. 11, 506 (1970).PubMedGoogle Scholar
  46. 46.
    Yu, R.K., Ledeen, R.W., and Eng, L.F., Ganglioside abnormalities in multiple sclerosis, J, Neurochem 23, 169 (1974).CrossRefGoogle Scholar
  47. 47.
    Yu, R.K., Ledeen, R.W., Gajdusek, D.C., and Gibbs, C.J., Ganglioside changes in slow virus diseases: analyses of chimpanzee brains infected with kuru and Creutzfeldt-Jakob agents, Brain Res. 70, 103 (1974).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • R. W. Ledeen
    • 1
  • C. A. Miller
    • 1
  • J. E. Haley
    • 1
  • C. S. Raine
    • 1
  1. 1.Departments of Neurology, Biochemistry, Pathology and NeuroscienceAlbert Einstein College of MedicineBronxUSA

Personalised recommendations