Advertisement

Chemical Induction of Lysosomal Storage

  • Michel Philippart
  • Elsa Kamensky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 68)

Abstract

Primary lysosomal storage disorders involve the accumulation of lipids, mucopolysaccharides or saccharides following a genetic mutation of the corresponding lysosomal hydrolases. Aside from these conditions it is becoming apparent that there are other types of storage disorders which do not result from a specific hydrolase deficiency but reflect a more generalized impairment of the lysosomal digestion. We have proposed to call such disorders secondary lysosomal storage disorders (1).

Keywords

Hydrolase Activity Smooth Endoplasmic Reticulum Aryl Sulfatase Lysosomal Storage Disorder Chemical Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Philippart, M. Diagnosis and treatment of inborn errors of lipid metabolism. In: Modification of lipid metabolism. Ed. by E.G. Perkins and L.A. Witting. pp. 57–84, Acad. Press New York, 1975.Google Scholar
  2. 2.
    Chio, K.S., Reiss, U., Fletcher, B. and Tappel, A.L. Peroxidation of subcellular organelles: formation of lipofuscinlike fluorescent pigments. Science, 166, 1535–1536, 1969.PubMedCrossRefGoogle Scholar
  3. 3.
    Laurent, G., Hildebrand, J., and Thys, O. Alterations of rat liver lysosomes and smooth endoplasmic reticulum induced by the diazafluoranthen derivative AC-3579. Lab. Invest., 32, 580–584, 1975.PubMedGoogle Scholar
  4. 4.
    Lullmann, H., Lullmann-Rauch, R. and Wassermann, O. Druginduced phospholipidosis. Germ. Med., 3, 128–135, 1975.Google Scholar
  5. 5.
    Lie, S.O., McKusick, V.A. and Neufeld, E.F. Simulation of genetic mucopolysaccharidoses in normal human fibroblasts by alteration of pH of the medium. Proc. Nat. Acad. Sci. USA, 69, 2361–2363, 1972.PubMedCrossRefGoogle Scholar
  6. 6.
    Mego, J.L., Farb, R.M. and Barnes, J. An adenosine triphosphate-dependent stabilization of proteolytic activity in heterolysosomes. Biochem. J., 128, 763–769, 1972.PubMedGoogle Scholar
  7. 7.
    Li, S-C., Wan, C-C., Mazzotta, M.Y. and Li, Y-T. Requirement of an activator for the hydrolysis of sphingoglycolipids by glycosidases of human liver. Carbohydr. Res., 34, 189–193, 1974.PubMedCrossRefGoogle Scholar
  8. 8.
    Hickman, S., Shapiro, L.J. and Neufeld, E.F. A recognition marker required for uptake of a lysosomal enzyme by cultured fibroblasts. Biochem. Biophys. Res. Commun., 57, 55–61, 1974.PubMedCrossRefGoogle Scholar
  9. 9.
    Fell, H.B. The direct action of vitamin A on skeletal tissue in vitro. In: The Fat Soluble Vitamins. Ed. by H.F. De Luca and J.W. Suttie, pp. 187–202, Univ. Wisconsin Press, Madison, 1970.Google Scholar
  10. 10.
    Hobbs, H.E., Sorsby, A. and Freedman, A. Retinopathy following chloroquine therapy. Lancet, 2, 478–480, 1959.PubMedCrossRefGoogle Scholar
  11. 11.
    Whisnant, J.P., Espinosa, R.R., Kierland, R.A., and Lambert, E.H. Chloroquine neuromyopathy. Mayo Clin. Proc., 38, 502–513, 1963.Google Scholar
  12. 12.
    Gleiser, CA., Bay, W.W., Dukes, T.W., Brown, R.S., Read, W.K. and Pierce, K.R. Study of chloroquine toxicity and a drug-induced cerebrospinal lipodystrophy in swine. J. Am. Pathol., 53, 27–46, 1968.Google Scholar
  13. 13.
    Read, W.K., and Bay, W.W. Basic cellular lesion in chloroquine toxicity. Lab. Invest., 24, 246–259, 1971.PubMedGoogle Scholar
  14. 14.
    Gerard, J.M. Stoupel, N., Collier, A. and Flament-Durant, J. Morphologic study of a neuromyopathy caused by prolonged chloroquine treatment. Eur. Neurol., 9, 363–379, 1973.PubMedCrossRefGoogle Scholar
  15. 15.
    Fedorko, M. Effect of chloroquine on morphology of cytoplasmic granules in maturing human leukocytes — an ultrastructural study. J. Clin. Invest., 46, 1932–1942, 1967.PubMedCrossRefGoogle Scholar
  16. 16.
    Fedorko, M. E., Hirsch, J. G. and Cohn, Z. A. Autophagic vacuoles produced in vitro. I. Studies on cultured macrophages exposed to chloroquine. J. Cell Biol., 38, 377–391, 1968.PubMedCrossRefGoogle Scholar
  17. 17.
    Fedorko, M. E., Hirsch, J. G. and Cohn, Z. A. Autophagic vacuoles produced in vitro. II. Studies on the mechanism of formation of autophagic vacuoles produced by chloroquine. J. Cell. Biol., 38, 392–402, 1968.PubMedCrossRefGoogle Scholar
  18. 18.
    Lie, S.O. and Schofield, B. Inactivation of lysosomal function in normal cultured human fibroblasts by chloroquine. Biochem. Pharmacol., 22, 3109–3114, 1973.PubMedCrossRefGoogle Scholar
  19. 19.
    Thys, O., Hildebrand, J., Gerin, Y. and Jacques, P.J. Alterations of rat liver lysosomes and smooth endoplasmic reticulum induced by the diazafluoranthen derivative AC-3579. I. Morphologic and biochemical lesions. Lab. Invest., 28, 70–82, 1973.PubMedGoogle Scholar
  20. 20.
    Hildebrand, J., Thys, O. and Gerin, Y. Alterations of rat liver lysosomes and smooth endoplasmic reticulum induced by the diazafluoranthen derivative AC-3579. II. Effects of the drug on phospholipid metabolism. Lab. Invest., 28, 83–86, 1973.PubMedGoogle Scholar
  21. 21.
    Miller, F., De Harven, E. and Palade, G.E. The structure of eosinophil leukocyte granules in rodents and in man. J. Cell Biol., 31, 349–362, 1966.PubMedCrossRefGoogle Scholar
  22. 22.
    Kamensky, E., Philippart, M., Cancilla, P. and Frommes, S.P. Cultured skin fibroblasts in storage disorders. An analysis of ultrastructural features. Am. J. Pathol., 73, 59–72, 1973.PubMedGoogle Scholar
  23. 23.
    Rouser, G., Fleisher, S. and Yamamoto, A. Two-dimensional thin-layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids, 5, 494–496, 1970.PubMedCrossRefGoogle Scholar
  24. 24.
    Den Tandt, W.R., Lassila, E. and Philippart, M. Leroy’s I-cell disease: Markedly increased activity of plasma acid hydrolases. J. Lab. Clin. Med., 83, 403–408, 1974.Google Scholar
  25. 25.
    Philippart, M. (14C) incorporation into brain expiants from lipofuscinosis and sulfatidosis. Third International Meeting of the International Society for Neurochemistry, Budapest, p 343, 1971.Google Scholar
  26. 26.
    Wiesmann, U.N., Lightbody, J., Vassella, F. and Herschkowitz, N.N. Multiple lysosomal enzyme deficiency due to enzyme leakage? N. Engl. J. Med., 284, 109–110, 1971.PubMedGoogle Scholar
  27. 27.
    Rouser, G., Kritchevsky, G., Yamamoto, A., Knudson, A. and Simon, G. Accumulation of a glycerophospholipid in classical Niemann-Pick disease. Lipids, 3, 287–293, 1968.PubMedCrossRefGoogle Scholar
  28. 28.
    Van Hoof, F., Hers, H.G. Other lysosomal storage disorders. In: Lysosomes and storage diseases. Ed. by H.G. Hers & F. Van Hoof, pp 553–573, Acad. Press, New York, 1973.Google Scholar
  29. 29.
    De Duve, C., De Barsy, T., Poole, B., Trouet, A., Tulkens, P., and Van Hoof, F. Lysosomotropic agents. Biochem. Pharmacol., 23, 2495–2531, 1974.PubMedCrossRefGoogle Scholar
  30. 30.
    De Duve, C. From cytases to lysosomes. Fed. Proc., 23, 1045–1049, 1964.Google Scholar
  31. 31.
    Allison, A. The role of lysosomes in the action of drugs and hormones. Adv. Chemotherapy, 3, 253–302, 1968.Google Scholar
  32. 32.
    Wibo, M. and Poole, B. Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J. Cell. Biol. 63, 430–440, 1974.PubMedCrossRefGoogle Scholar
  33. 33.
    Abraham, R. and Hendy, R. Effects of chronic chloroquine treatment on lysosomes of rat liver cells. Exp. Mol. Pathol., 12, 148–159, 1970.PubMedCrossRefGoogle Scholar
  34. 34.
    Rubin, M., Bernstein, H.N. and Zvaifler, N.J. Studies on the pharmacology of chloroquine. Arch. Ophthalmol., 70, 474–481, 1963PubMedCrossRefGoogle Scholar
  35. 35.
    Gaddoni, G., Carraro, P.R. and Capitani, G. Azione della clorochina sui fibroblasti coltivati in vitro. Nota III-Effetti sulla morfologia cellullare. Arch. Ital. Dermat. Vener. Sess., 33, 397–414, 1964.Google Scholar
  36. 36.
    Abraham, R., Hendy, R. and Grasso, P. Formation of myeloid bodies in rat liver lysosomes after chloroquine administration. Exp. Mol. Pathol., 9, 212–229, 1968.PubMedCrossRefGoogle Scholar
  37. 37.
    Delpino, A. and Ferrini, U. Protein synthesis stimulation in rat liver by chloroquine. Experientia, 28, 1061–1062, 1972.PubMedCrossRefGoogle Scholar
  38. 38.
    Philippart, M., Nakatani, S., Kamensky, E., and Zeilstra, K. Impaired turnover of lipid, protein and mucopolysaccharide in Leroy’s Inclusion-cell disease. Pediatr. Res., 7, 392, 1973.Google Scholar
  39. 39.
    Philippart, M., Zeilstra, K. and Kamensky, E. Impaired sulfate turnover in cultured skin fibroblasts and amniotic cells from patients with mucopolysaccharidosis. Pediatr. Res., 7, 348, 1973.Google Scholar
  40. 40.
    Samuels, S., and Aleu, F. The formation of membrane aggregates. In: Inborn Disorders of Sphingolipid Metabolism. Ed. by S.M. Aronson and B.W. Volk, pp 317–324, Pergamon Press Oxford, 1967.Google Scholar
  41. 41.
    Tondeur, M., Vamos-Hurwitz, E., Mockel-Pohl, S., Dereume, J.P., Cremer, N., and Leob, H. Clinical biochemical, and ultrastructural studies in a case of chondrodystrophy presenting the I-cell phenotype in tissue culture. J. Pediatr., 79, 366–378, 1971.PubMedCrossRefGoogle Scholar
  42. 42.
    Dingle, J.T. and Lucy, J.A. Vitamin A, carotenoids and cell function. Biol. Rev., 40, 422–461, 1965.PubMedCrossRefGoogle Scholar
  43. 43.
    Daniel, M.R., Dingle, J.T., Glauert, A.M. and Lucy, J.A. The action of excess of vitamin A alcohol on the fine structure of rat dermal fibroblasts. J. Cell Biol., 30, 465–475, 1966.PubMedCrossRefGoogle Scholar
  44. 44.
    Allison, A.C. and Young, M.R. Uptake of dyes and drugs by living cells in culture. Life Sci., 3, 1407–1414, 1964.PubMedCrossRefGoogle Scholar
  45. 45.
    Hsu, L. and Tappel, A.L. Effect of vitamin A on the activity of arylsulfatase and β-glucuronidase of rat tissues. Biochem. Biophys. Acta, 101, 113–120, 1965.PubMedGoogle Scholar
  46. 46.
    Ahkong, Q.F., Fisher, D., Tampion, W. and Lucy, J. A. The fusion of erythrocytes by fatty acids, esters, retinol and α-tocopherol. Biochem. J., 136, 147–155, 1973.PubMedGoogle Scholar
  47. 47.
    Lucy, J.A. The fusion of biological membranes. Nature, 227, 814–817, 1970.CrossRefGoogle Scholar
  48. 48.
    Howell, J.I., Fisher, D., Goodall, A.H., Verrinder, M., and Lucy, J.A. Interactions of membrane phospholipids with fusogenic lipids. Biochem. Biophys. Acta, 332, 1–10, 1973.Google Scholar
  49. 49.
    Higgins, J.A. Studies on the biogenesis of smooth endoplasmic reticulum membranes in hepatocytes of phenobarbital-treated rats. II. The site of phospholipid synthesis in the initial phase of membrane proliferation. J. Cell Biol., 62, 635–646, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Michel Philippart
    • 1
  • Elsa Kamensky
    • 1
  1. 1.Mental Retardation CenterUniversity of CaliforniaLos AngelesUSA

Personalised recommendations