Glycoprotein Catabolism in Brain Tissue in the Lysosomal Enzyme Deficiency Diseases

  • Eric G. Brunngraber
  • Leonard G. Davis
  • Javaid I. Javaid
  • Bruno Berra
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 68)


Glyocoproteins of brain tissue contain two major classes of heteropolysaccharide side chain, both of which are attached to the polypeptide chain of the protein moiety by means of an alkali-stable beta-aspartylglycosamine linkage (1). These carbohydrate-rich structures are readily liberated as soluble glycopeptides upon treatment of the denatured glycoproteins with proteolytic enzymes such as papain or pronase. The acidic sialoglycopeptides thus released account for approximately 65% of the glycoprotein-carbo-hydrate in brain tissue. These substances contain N-acetylneuraminic acid, galactose, mannose, N-acetylglucosamine, and fucose; some of these heteropolysaccharide polymers also contain sulfate-ester groups. A hypothetical structure for these glycopeptides is depicted (Fig. 1).


Cetylpyridinium Chloride Metachromatic Leukodystrophy Cerebral Gray Matter Terminal Galactose Residue Remove Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Brunngraber, H., Hof, J. Susz, B. D. Brown, A. Aro, and I. Chang. Glycopeptides from rat brain glycoproteins. Biochim. Biophys. Acta, 304, 781, 1973.PubMedCrossRefGoogle Scholar
  2. 2.
    R. G. Spiro. Glycoproteins. Ann. Rev. Biochem., 39, 599, 1970.PubMedCrossRefGoogle Scholar
  3. 3.
    J. I. Javaid, H. Hof, and E. G. Brunngraber. Preparation and properties of concanavalin A-binding glycopeptides derived from rat brain glycoproteins. Biochim. Biophys. Acta, 404, 74, 1975.PubMedCrossRefGoogle Scholar
  4. 4.
    H. I. Hof, J. P. Susz, J. I. Javaid, and E. G. Brunngraber. Concanavalin A-binding-glycopeptides from rat brain glycoproteins. Neurobiology, in press.Google Scholar
  5. 5.
    N. N. Aronson, Jr., and C. de Duve. Digestive activity of lysosomes. J. Biol. Chem., 243, 4564, 1968.PubMedGoogle Scholar
  6. 6.
    A. G. W. Norden, L. L. Tennant, and J. S. O’Brien. GM1 ganglioside beta-galactosidase A. J. Biol. Chem., 249, 7969, 1974.PubMedGoogle Scholar
  7. 7.
    A. Tingey. The results of glycolipid analysis in certain types of lipidoses and leucodystrophy. J. Neurochem., 3, 230, 1959.PubMedCrossRefGoogle Scholar
  8. 8.
    H. Kohno, I. Yamashina. Purification and properties of 4-L-aspartylglycosylamine amindohydrolase from hog kidney. Biochim. Biophys. Acta, 258, 600, 1972.Google Scholar
  9. 9.
    J. Palo, H. Savolainen. Biochemical diagnosis of aspartylglycosaminuria. Ann. Clin. Res., 5, 156, 1973.PubMedGoogle Scholar
  10. 10.
    R. J. Pollitt, and K. M. Pretty. The glycoasparagines in urine of a patient with aspartylglycosaminuria. Biochem. J., 141, 141, 1974.PubMedGoogle Scholar
  11. 11.
    E. G. Brunngraber, L. A. Witting, C. Haberland, and B. Brown. Glycoproteins in Tay-Sachs Disease: Isolation and carbohydrate composition of glycopeptides. Brain Res., 38, 151, 1972.PubMedCrossRefGoogle Scholar
  12. 12.
    K. Suzuki. Cerebral GM1-gangliosidosis: Chemical pathology of visceral organs. Science, 159, 1471, 1968.PubMedCrossRefGoogle Scholar
  13. 13.
    K. Suzuki, K. Suzuki, S. Kamoshita. Clinical pathology of GM2-gangliosidosis. J. Neuropathol. Exp. Neurol., 28, 25, 1968.Google Scholar
  14. 14.
    Y. Suzuki, A. C. Crocker, K. Suzuki. GM1-gangliosidosis. Arch. Neurol. (Chic), 24, 58, 1971.CrossRefGoogle Scholar
  15. 15.
    L. S. Wolfe, R. G. Senior, and N. M. K. Ng Ying Kin. The structures of oligosaccharides accumulating in the liver of GM1-gangliosidosis, Type 1. J. Biol. Chem., 249, 1828, 1974.PubMedGoogle Scholar
  16. 16.
    G. C. Tsay, G. Dawson, Y-T. Li. Sturcture of the glycopeptide storage material in GM1 gangliosidosis. Sequence determination with specific endo-and exoglycosidases. Biochim. Biophys. Acta, 385, 305, 1975.PubMedCrossRefGoogle Scholar
  17. 17.
    A. Calatroni. Fractionation and characterization of glycopeptides and oligosaccharides from the liver of a patient with GM1-gangliosidosis, Type 1. Ital J. Biochem., 23, 329, 1974.PubMedGoogle Scholar
  18. 18.
    L. S. Wolfe, J. T. R. Clarke, R. G. Senior. Biochemical studies on GM1-gangliosidosis. Adv. in Exptl. Med. and Biol., 19, 373, 1971.Google Scholar
  19. 19.
    J. W. Callahan, L. S. Wolfe. Isolation and characterization of keratan sulfates from the liver of a patient with GM1 gangliosidosis, Type I. Biochim. Biophys. Acta, 215, 527, 1970.PubMedCrossRefGoogle Scholar
  20. 20.
    G. C. Tsay, G. Dawson. Structure of the “keratan-sulfate-like” material in liver from a patient with GM1-gangliosidosis (beta-D-galactosidase deficiency). Biochem. Biophys. Res. Communs, 52, 759, 1973.CrossRefGoogle Scholar
  21. 21.
    N. M. K. Ng Ying Kin, L. S. Wolfe. Oligosaccharides accumulating in the liver from a patient with GM2-gangliosidosis Variant o (Sandhoff-Jatzekewitz Disease). Biochem. Biophys. Res. Communs. 59, 837, 1974.CrossRefGoogle Scholar
  22. 22.
    G. C. Tsay and G. Dawson. Glycopeptide storage in fibroblasts from patients with inborn errors of glycoprotein and glycolipid catabolism. Biochem. Biophys. Res. Communs., 63, 807, 1975.CrossRefGoogle Scholar
  23. 23.
    P. A. Ockerman. Mannosidosis: Isolation of oligosaccharide storage material from brain. J. Pediat., 75, 360, 1969.PubMedCrossRefGoogle Scholar
  24. 24.
    N. E. Norden, A. Lundblad, P. A. Ockerman, R. D, Jolly. Mannosidosis in angus cattle. Partial characterization of two mannose containing oligosaccharides. FEBS Lett., 35, 209, 1973.PubMedCrossRefGoogle Scholar
  25. 25.
    E. G. Brunngraber. Neuropathology of glycopeptides derived from brain glycoproteins. Adv. Exptl Med. and Biol., 25, 255, 1972.CrossRefGoogle Scholar
  26. 26.
    E. G. Brunngraber, B. D. Brown, and H. Hof. Determination of gangliosides glycoproteins, and glycosaminoglycans in brain tissue. Clin. Chim. Acta, 32, 159, 1971.PubMedCrossRefGoogle Scholar
  27. 27.
    L. G. Davis, J. Javaid, and E. G. Brunngraber. To be publishedGoogle Scholar
  28. 28.
    B. Berra, S. DiPalma, and E. G. Brunngraber. Altered levels of tissue gangliosides and glycoproteins in the infantile form of GM1-gangliosidosis. Clin. Chim. Acta, 57, 301, 1974.PubMedCrossRefGoogle Scholar
  29. 29.
    E. G. Brunngraber, B. D. Brown, and A. Aro. Glycoproteins in brain tissue of the O-variant of GM2 gangliosidosis. J. Neurochem., 22, 125, 1974.PubMedCrossRefGoogle Scholar
  30. 30.
    E. G. Brunngraber, B. Berra, and V. Zambotti. Altered levels of tissue glycoproteins, gangliosides, glycosaminoglycans and lipids in Niemann-Pick’s Disease. Clin. Chim. Acta, 48, 173, 1973.PubMedCrossRefGoogle Scholar
  31. 31.
    B. Berra, E. G. Brunngraber, V. Aguilar, A. Aro, and V. Zambotti. Gangliosides, glycoproteins, and glycosaminoglycans in Krabbe’s Disease. Clin. Chim. Acta, 47, 325, 1973.PubMedCrossRefGoogle Scholar
  32. 32.
    Y. Suzuki, J. C. Jacob, K. Suzuki, K. N. Kutty, and K. Suzuki. GM2 gangliosidosis with total hexosaminidase deficiency. Neurology, 21, 313, 1971.PubMedCrossRefGoogle Scholar
  33. 33.
    K. Suzuki, K. Suzuki, I. Radin, N. Ishii. Juvenile GM2 gangliosidosis. Clinical variant of Tay-Sachs Disease or a New Disease. Neurology, 20, 190, 1970.PubMedCrossRefGoogle Scholar
  34. 34.
    S. Bogoch. Brain glycoproteins and intercellular recognition. Tay-Sachs Disease and intracellular recognition. Adv. Exptl. Med. and Biol., 19, 127, 1972.Google Scholar
  35. 35.
    J. A. Balint and E. C. Kyriadides. Studies on red cell stromal proteins in Tay-Sachs Disease. J. Clin. Invest., 47, 1858, 1972.CrossRefGoogle Scholar
  36. 36.
    M. Pourfar and S. Levy. Clin. Chem., 17, 332, 1971.PubMedGoogle Scholar
  37. 37.
    E. G. Brunngraber, B. Berra, and V. Zambotti. Brain glycoproteins in GM1-gangliosidosis: Isolation and carbohydrate composition of glycopeptides. FEBS Lett., 34, 350, 1973.PubMedCrossRefGoogle Scholar
  38. 38.
    V. Patel, H. H. Goebel, I. Watanabe, W. Zeman. Studies on GM1-gangliosidosis, Type II. Acta Neuropathol., 30, 155, 1974.PubMedCrossRefGoogle Scholar
  39. 39.
    T. Yutaka, S. Okada, K. Mimaki, T. Sugita, H. Yabuuchi. Enzymatic study of GM1 gangliosidosis. Clin. Chim. Acta, 59, 283, 1975.PubMedCrossRefGoogle Scholar
  40. 40.
    L. S. Wolfe, J. Callahan, J. S. Fawcett, G. Andermann, C. R. Scriver. GM1 gangliosidosis without chondrodystrophy or visceromegaly. Neurology, 20, 23, 1970.PubMedCrossRefGoogle Scholar
  41. 41.
    R. M. Norman, A. H. Tingey, M. C. Fowler. Niemann-Pick Disease, Proceedings of the Fifth Internatl. Congr. on Neuropathol., Zurich, 1965, Amsterdam, Excerta Medical Foundation, 1966, p. 143.Google Scholar
  42. 42.
    L. Svennerholm. Lipidoses, Metab. Physiol. Significance Lipids, Proc., Cambridge, Engl. 553, 1963.Google Scholar
  43. 43.
    L. Svennerholm. The metabolism of gangliosides in cerebral lipidoses. In: Inborn Disorders of Sphingolipid Metabolism, S. M. Aronson and B. W. Volk, eds., Pergamon Press, Oxford, 1967, p. 169.Google Scholar
  44. 44.
    L. Svennerholm and P. Sourander. Combined histological and chemical investigations on brain autopsy material in lipidoses. Proceedings of the Fifth Internatl. Congr. on Neuropathol., Zürich, 1965, Amsterdam, Excerta Medical Foundation, 1966, p. 342.Google Scholar
  45. 45.
    J. N. Kanfer, M. Stein, C. Spielvogel. Recent observations on Gaucher’s Disease. Adv. Exp. Med. Biol., 19, 225, 1972.Google Scholar
  46. 46.
    A. H. Tingey, and G. W. F. Edgar. A contribution to the chemistry of the leukodystrophies. J. Neurochem., 10, 817, 1963.PubMedCrossRefGoogle Scholar
  47. 47.
    Y. Suzuki and K. Suzuki. Glycosphingolipid beta-galactosidases. II. Electrofocusing characterization of the enzymes in human globoid cell leukodystrophy (Krabbe’s Disease). J. Biol. Chem. 249, 2105, 1974.PubMedGoogle Scholar
  48. 48.
    J. N. Cumings. Chemistry of disease of the central nervous system, Metabolism, Clin. and Exptl., 9, 219, 1960.Google Scholar
  49. 49.
    L. Svennerholm. Some aspects of the biochemical changes in leukodystrophy. In: Brain Lipids, Lipoproteins, Leukodystrophies, J. Folch-Pi and H. Bauer, eds., Elsevier, Amsterdam, 1963, p. 104.Google Scholar
  50. 50.
    B. Hagberg, P. Sourander, L. Svennerholm, and H. Voss. Late infantile metachromatic leukodystrophy of the genetic type. Acta Paediat., (Uppsala), 49, 135, 1960.CrossRefGoogle Scholar
  51. 51.
    G. W. F. Edgar. Anatomo-chemical research in demyelinating conditions and inborn errors in metabolism. Proc. of the Fifth Internal. Congr. on Neuropathol., Zürich, 1965, Amsterdam, Excerpta Medical Foundation, 1966, p. 328.Google Scholar
  52. 52.
    P. L. Masters, W. B. MacDonald, M. M. P. Ryan, and J. N. Cumings. Arch. Disease Childhood, 39, 345, 1964.CrossRefGoogle Scholar
  53. 53.
    H. Yabuuchi, S. Okada, M. Honda, and J. Hanai. Pathological and biochemical study of metachromatic leukodystrophy. Med. J. Osaka Univ., 18, 361, 1968.PubMedGoogle Scholar
  54. 54.
    E. de Vries, L. van Bogaert, and G. W. F. Edgar. New observations on familial idiocy with spongy degeneration of nerve centers. Rev. Neurol., 98, 271, 1958.Google Scholar
  55. 55.
    H. Urich. Histochemical observations on metachromatic leukodystrophy. Intern. Kongr. Neuropathol., Proc. 4th; Munich, 1961, p. 42.Google Scholar
  56. 56.
    J. N. Cumings and M. Kremer. Biochemical aspects of neurological disorders. F. A. Davis, Pub., Philadelphia, 1965.Google Scholar
  57. 57.
    H. Hollaender. Histochemical demonstration of mucopolysaccharides in sulfatide granules formed during the intracellular storate of cerebroside sulfate esters in metachromatic leukodystrophy. J. Neurochem., 12, 335, 1965.PubMedCrossRefGoogle Scholar
  58. 58.
    R. M. Norman, H. Urich, and A. H. Tingey. Metachromatic leukoencephalopathy: a form of lipidosis. Brain, 83, 369, 1960.PubMedCrossRefGoogle Scholar
  59. 59.
    A. Resibois-Gregoire. Electron microscopic studies of metachromatic leukodystrophy. II. Compound Nature of the Inclusions. Acta Neuropathol. (Berlin) 9, 244, 1967.PubMedCrossRefGoogle Scholar
  60. 60.
    P. Sourander. Histopathological studies in sulfatide lipidosis (metachromatic leukodystrophy). Acta Pathol. Microbiol., Scand. Suppl., 154, 83, 1962.Google Scholar
  61. 61.
    H. W. Moser, M. Sugita, M. D. Harrison, M. William. Liver glycolipids, steroid sulfates, and steroid sulfatases in a form of metachromatic leukodystrophy associated with multiple forms of sulfate deficiency. Adv. Exp. Med. Biol., 19, 429, 1972.Google Scholar
  62. 62.
    Y. Eto, S. Rampini, U. Wiesmann, and N. N. Herschkowitz. Enzymatic studies of sulfatases in tissues of the normal human and in metachromatic leukodystrophy with multiple sulfatase deficiencies: arylasulfatases A, B, and C., cerebroside sulfatase, psychosine sulfatase and steroid sulfatases. J. Neurochem., 23, 1161, 1974.PubMedCrossRefGoogle Scholar
  63. 63.
    C. Haberland, E. G. Brunngraber, L. Witting, and A. Daniels. Juvenile metachromatic leukodystophy. Case report with clinical, histopatholgical, ultrastructural, and biochemical observations. Acta Neuropathol. (Berlin), 26, 93, 1973.Google Scholar
  64. 64.
    W. Zeman and A. N. Siakotos. The neuronal ceroid-lipofuscinoses. In: Lysosomes and Storage Diseases, H. G. Hers and F. Van Hoof, eds., Academic Press, New York, 1973, p. 519.Google Scholar
  65. 65.
    P. F. Borri and G. J. M. Hooghwinkel. Comparative studies of glycolipids, and carbohydrate moieties in brain and visceral organs in amaurotic idiocy and gargoylism. Pathol. Eur., 3, 416, 1968.PubMedGoogle Scholar
  66. 66.
    G. W. F. Edgar and L. V. van Bogaert. Anatomo-chemical study of the white matter in late infantile amaurotic idiocy. In: Inborn Disorders of Sphingolipid Metabolism. S. M. Aronson and B. W. Volk, eds., Pergamon Press, Oxford, 1967, p. 75.Google Scholar
  67. 67.
    C. Haberland, E. G. Brunngraber, L. A. Witting, and H. Hof. Late infantile amaurotic idiocy (LIAI). Neurology, 22, 305, 1972.PubMedCrossRefGoogle Scholar
  68. 68.
    R. Landolt. Biochemical studies on two cases of neuronal lipid storage diseases. Pathol. Eur., 3, 440, 1968.PubMedGoogle Scholar
  69. 69.
    L. S. Adelman, E. Young, N. H. Bass. Abnormal accumulation of sialoglycoprotein in a case of late infantile amaurotic idiocy. Neurology, 24, 1045, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Eric G. Brunngraber
    • 1
    • 2
    • 3
  • Leonard G. Davis
    • 1
    • 2
    • 3
  • Javaid I. Javaid
    • 1
    • 2
    • 3
  • Bruno Berra
    • 1
    • 2
    • 3
  1. 1.Missouri Institute of Psychiatry, School of MedicineUniversity of Missouri-ColumbiaSt. LouisUSA
  2. 2.Illinois State Psychiatric InstituteChicago
  3. 3.Istituto Di Chimica BiologicaDell’Universita Di Milano, Facolta di MedicinaMilanoItaly

Personalised recommendations