Some Simple Bootstrap Models

  • B. M. Udgaonkar


The idea of bootstrap as a possible mechanism underlying the dynamics of strong interactions arose in the early work of Chew and Mandelstam1 on π-π scattering, over five years ago. Since then, a large number of bootstrap calculations have been made for different kinds of systems by using a variety of approximations.† These have made it plausible that bootstraps may provide the basic mechanism for binding the large number of hadrons we know today, and that approximations based on nearby singularities and a suitable parametrization of short-range effects—cutoffs, Balázs poles etc.— are reasonably adequate for many purposes. We shall discuss a class of simple models based on these ideas. We do not expect these to give quantitative results for masses of particles, which appear to depend on the details of the short range forces. So in these models we shall not mention any predictions about the masses. On the other hand, the information they furnish on multiplet structure, particle spectra, and relative couplings is expected to be more reliable, and we shall concentrate on these aspects.


Baryon Octet Bootstrap Condition Axial Vector Meson Meson Octet Nucleon Isobar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. F. Chew and S. Mandelstam, Nuovo Cimento 19: 752 (1961).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    G. F. Chew, Phys. Rev. Letters 9: 233 (1962).ADSCrossRefGoogle Scholar
  3. 3.
    E. Abers, L. A. P. Balázs, Y. Hara, Phys. Rev. 136: B 1382 (1964).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    G. Wentzel, Rev. Mod. Phys. 19: 1 (1947).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15: 35 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    V. Singh, Phys. Rev. 144: 1275 (1966).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Kumar, Phys. Rev. 148: 1347 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    V. Singh and B. M. Udgaonkar, Phys. Rev. 149: 1164 (1966); C. Goebel, Proceedings of the 12th International Conference on High Energy Physics, Vol. 1, Dubna, 1964, Atomizdat, Moscow, 1966, p. 255.ADSCrossRefGoogle Scholar
  9. 9.
    R. Dashen, Phys. Letters 11: 89 (1964). Y. Hara, Phys. Rev. 135: B 1079 (1964).ADSCrossRefGoogle Scholar
  10. 10.
    C. Goebel, Ref. 8. V. Singh, unpublished.Google Scholar
  11. 11.
    L. A. P. Balázs, V. Singh, and B. M. Udgaonkar, Phys. Rev. 139: B 1313 (1965). R. C. Hwa and S. H. Patii, Phys. Rev. 138: B 933 (1965).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    R. H. Capps, Phys. Rev. Letters, 14: 31 (1965); J. G. Belinfante and R. E. Cutkosky, Phys. Rev. Letters 14: 33 (1965).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    V. Singh and B. M. Udgaonkar, Phys. Rev. 139: B 1585 (1965).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    C. Goebel, Phys. Rev. Letters 16: 1130 (1966). See also T. Cook and B. Sakita, J. Math. Phys. 8: 708 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    J. Kuriyan and E. C. G. Sudarshan, Phys. Letters 21: 106 (1966); Phys. Rev. Letters 16: 825 (1966).ADSCrossRefGoogle Scholar
  16. 16.
    J. Fulco and D. Y. Wong, Phys. Rev. Letters 15: 274 (1965).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    B. M. Udgaonkar, Institute for Advanced Study preprint, July, 1966.Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • B. M. Udgaonkar
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombayIndia

Personalised recommendations