Advertisement

The Biogeochemistry of Hypersaline Microbial Mats

  • David J. Des Marais
Part of the Advances in Microbial Ecology book series (AMIE, volume 14)

Abstract

Microbial mats are structurally coherent macroscopic accumulations of microorganisms. Photosynthetic mats offer an opportunity to examine the dynamics of a complete microbial ecosystem. Microbial mats construct laminated “miniature reefs” called stromatolites, which occur typically as carbonate rocks and are among the oldest, most abundant fossil evidence of ancient life on Earth (Walter, 1976). Mats built by cyanobacteria created the most obvious and best-studied stromatolites in the fossil record (Walter, 1976; Walter et al., 1992).

Keywords

Sulfate Reduction Dissolve Inorganic Nitrogen Sulfide Oxidation Photic Zone Oxygenic Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, J. E., Haddad, R. I., and Des Marais, D. J., 1991, Method for determining stable isotope ratios of dissolved organic carbon in interstitial and other natural marine waters, Mar. Chem. 33:335–351.PubMedCrossRefGoogle Scholar
  2. Bebout, B. M., 1992, Interactions of Nitrogen and Carbon Cycling in Microbial Mats and Stromatolites, University of North Carolina at Chapel Hill, Ph.D. dissertation.Google Scholar
  3. Bebout, B. M., Paerl, H. W., Bauer, J. E., Canfield, D. E., and Des Marais, D. J., 1994, Nitrogen cycling in microbial mat communities: The quantitative importance of N-fixation and other sources for N for primary productivity, in: Microbial Mats: Structure, Development and Environmental Significance, NATO ASI Series G, Vol. 35 (L. Stal and P. Caumette, eds.), Springer-Verlag, Heidelberg, pp. 265–271.Google Scholar
  4. Boudreau, B. P., and Guinasso, N. L., 1982, The influence of a diffusive sublayer on accretion, dissolution, and diagenesis at the sea floor, in: The Dynamic Environment of the Ocean Floor (K. A. Fanning and F. T. Manheim, eds.), Lexington Books, Lexington, Massachusetts, pp. 115–145.Google Scholar
  5. Cadée, G. C., and Hegeman, J., 1974, Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea, Neth. J. Sea Res. 8:260–291.CrossRefGoogle Scholar
  6. Canfield, D. E., and Des Marais, D. J., 1991, Aerobic sulfate reduction in microbial mats, Science 251:1471–1473.PubMedCrossRefGoogle Scholar
  7. Canfield, D. E., and Des Marais, D. J., 1993, Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat, Geochim. Cosmochim. Acta 57:3971–3984.PubMedCrossRefGoogle Scholar
  8. Canfield, D. E., and Des Marais, D. J., 1994, Cycling of carbon, sulfur, oxygen and nutrients in a microbial mat, in: Microbial Mats: Structure, Development and Environmental Significance, NATO ASI Series G, Vol. 35 (L. J. Stal and P. Caumette, eds.), Springer-Verlag, Heidelberg, pp. 255–263.Google Scholar
  9. D’Amelio, E. D., Cohen, Y., and Des Marais, D. J., 1987, Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats, Arch. Microbiol. 147:213–220.PubMedCrossRefGoogle Scholar
  10. D’Amelio, E. D., Cohen, Y., and Des Marais, D. J., 1989, Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt, in: Microbial Mats, Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), American Society for Microbiology, Washington, D.C., pp. 97–113.Google Scholar
  11. Des Marais, D. J., and Canfield, D. E., 1994, The carbon isotope biogeochemistry of microbial mats, in: Microbial Mats: Structure, Development and Environmental Significance, NATO ASI Series G, Vol. 35 (L. J. Stal and P. Caumette, eds.), Springer-Verlag, Heidelberg, pp. 289–298.Google Scholar
  12. Des Marais, D. J., Cohen, Y., Nguyen, H., Cheatham, M., Cheatham, T., and Munoz, E., 1989, Carbon isotopic trends in the hypersaline ponds and microbial mats at Guerrero Negro, Baja California Sur, Mexico: Implications for Precambrian stromatolites, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), American Society for Microbiology, Washington, D.C., pp. 191–205.Google Scholar
  13. Des Marais, D. J., D’Amelio, E., Farmer, J. D., Jorgensen, B. B., Palmisano, A. C., and Pierson, B. K., 1992, Case study of a modern microbial mat-building community: The submerged cyanobacterial mats of Guerrero Negro, Baja California Sur, Mexico, in: The Proterozoic Biosphere: A Multidisciplinary Study (W. J. Schopf and C. Klein, eds.), Cambridge University Press, New York, pp. 325–334.Google Scholar
  14. Farmer, J. D. 1992, Grazing and bioturbation in modern microbial mats, in: The Proterozoic Biosphere: A Multidisciplinary Study (J. W. Schopf and C. Klein, eds.), Cambridge University Press, New York, pp. 295–297.Google Scholar
  15. Farmer, J. D., and Richardson, L. L., 1988, Origin of microfabric in laminated microbial mats: Implications for interpreting stromatolites, EOS; Transactions of the American Geophysical Union 69:1131.Google Scholar
  16. Garcia-Pichel, F., Mechling, M., and Castenholz, R. W., 1994, Diel migrations of microorganisms within a benthic, hypersaline mat community, Appl. Environ. Microbiol. 60:1500–1511.PubMedGoogle Scholar
  17. Gerdes, G., and Krumbein, W. E., 1987, Faunal influence on the biolaminated deposits, in: Lecture Notes in Earth Sciences, Vol. 9 (S. Bhattacharji, G. M. Friedman, H. J. Neugebauer, and A. Seilacher, eds.), Springer-Verlag, Berlin, pp. 55–69.Google Scholar
  18. Grøntved, J., 1960, On the productivity of micro-benthos and phytoplankton in some Danish Fjords, Medd. Dan. Fisk. Havunders. New Ser. 3:55–91.Google Scholar
  19. Javor, B., 1983a, Nutrients and ecology of the Western Salt and Exportadora de Sal Saltern brines, in: Sixth International Symposium on Salt (B. C. Schreiber and H. L. Harner, eds.), Salt Institute, Alexandria, Va., pp. 195–205.Google Scholar
  20. Javor, B. J., 1983b, Planktonic standing crop and nutrients in a saltern ecosystem, Limnol. Oceanogr. 28:153–159.CrossRefGoogle Scholar
  21. Javor, B. J., and Castenholz, R. W., 1984, Invertebrate grazers of microbial mats, Laguna Guerrero Negro, Mexico, in: Microbial Mats: Stromatolites (Y. Cohen, R. W. Castenholtz and H. O. Halvorson, eds.), Alan R. Liss, New York, pp. 85–94.Google Scholar
  22. Jørgensen, B. B., 1994, Diffusion processes and boundary layers in microbial mats, in: Microbial Mats: Structure, Development and Environmental Significance, NATO ASI Series G, Vol. 35 (L. Stal and P. Caumette, eds.), Springer-Verlag, Heidelberg, pp. 243–253.Google Scholar
  23. Jørgensen, B. B., and Cohen, Y., 1977, Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats, Limnol. Oceanogr. 22:657–666.CrossRefGoogle Scholar
  24. Jørgensen, B. B., and Cohen, Y., 1987, Photosynthetic potential and light-dependent oxygen consumption in a benthic cyanobacterial mat, Appl. Environ. Microbiol. 54:176–182.Google Scholar
  25. Jørgensen, B. B., and Des Marais, D. J., 1986, Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats, FEMS Microbiol. Ecol. 38:179–186.PubMedCrossRefGoogle Scholar
  26. Jørgensen, B. B., and Des Marais, D. J., 1988, Optical properties of benthis photosynthetic communities: Fiber optic studies of cyanobacterial mats, Limnol. Oceanogr. 33:99–113.PubMedCrossRefGoogle Scholar
  27. Jørgensen, B. B., and Des Marais, D. J., 1990, The diffusive boundary layer of sediments: Oxygen microgradients over a microbial mat, Limnol. Oceanogr. 35:1343–1355.PubMedCrossRefGoogle Scholar
  28. Jørgensen, B. B., Cohen, Y., and Des Marais, D. J., 1987, Photosynthetic action spectra and adaptation to spectral light distribution of a benthic cyanobacterial mat, Appl. Environ. Microbiol. 53:879–886.PubMedGoogle Scholar
  29. Monson, K. D., and Hayes, J. M., 1980, Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli, evidence regarding the coupling of fatty acid and phospholipid synthesis, J. Biol. Chem. 255:11435–11441.PubMedGoogle Scholar
  30. Paerl, H. W., Bebout, B. M., Joye, S. B., and Des Marais, D. J., 1993, Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities, Limnol. Oceanogr. 38:1150–1161.PubMedCrossRefGoogle Scholar
  31. Paerl, H. W., Bebout, B. M., Currin, C. A., Fitzpatrick, M. W., and Pinckney, J. L., 1994, Nitrogen fixation dynamics in microbial mats, in: Microbial Mats: Structure, Development and Environmental Significance, NATO ASI Series G, Vol. 35 (L. Stal and P. Caumette, eds.), Springer-Verlag, Heidelberg, pp. 325–337.Google Scholar
  32. Palmisano, A. C., Cronin, S. E., D’Amelio, E. D., Munoz, E., and Des Marais, D. J., 1989, Distribution and survival of lipophilic pigments in a laminated microbial mat community near Guerrero Negro, Mexico, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities, (Y. Cohen and E. Rosenberg, eds.), American Society for Microbiology, Washington, D.C., pp. 138–152.Google Scholar
  33. Pierson, B. K., Valdez, D., Larsen, M., Morgan, E., and Mack, E. E., 1994, Chloroflexus-like organisms from marine and hypersaline environments: Distribution and diversity, Photosynth. Res. 41:35–52.CrossRefGoogle Scholar
  34. Revsbech, N. P., Jørgensen, B. B., and Blackburn, T. H., 1983, Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat, Limnol. Oceanogr. 28:1062–1074.CrossRefGoogle Scholar
  35. Risatti, J. B., Capman, W. C., and Stahl, D. A., 1994, Community structure of a microbial mat: The phylogenetic dimension, Proc. Natl. Acad. Sci. USA 91:10173–10177.PubMedCrossRefGoogle Scholar
  36. Roeske, C. A., and O’Leary, M., 1984, Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate, Biochemistry 23:6275–6284.CrossRefGoogle Scholar
  37. Walter, M. R. (ed.), 1976, Stromatolites, Elsevier, Amsterdam.Google Scholar
  38. Walter, M. R., and Heys, G. R., 1985, Links between the rise of Metazoa and the decline of stromatolites, Precambrian Res. 29:149–174.CrossRefGoogle Scholar
  39. Walter, M. R., Grotzinger, J. P., and Schopf, J. W., 1992, Proterozoic stromatolites, in: The Proterozoic Biosphere: A Multidisciplinary Study (J. W. Schopf and C. Klein, eds.), Cambridge University Press, New York, pp. 253–260.Google Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • David J. Des Marais
    • 1
  1. 1.Ames Research CenterMoffett FieldUSA

Personalised recommendations