Soil Microbial Processes Involved in Production and Consumption of Atmospheric Trace Gases

  • Ralf Conrad
Part of the Advances in Microbial Ecology book series (AMIE, volume 14)


World climate is not only a function of atmospheric physics but of atmospheric chemistry as well. In fact, the science community investigating questions on atmospheric chemistry developed rapidly after publication of the pioneering monograph by Christian Junge in 1963. Since then, it has become clear that the chemistry of the atmosphere is highly dynamic. In fact, the composition of the atmosphere is presently changing in a direction that ultimately may alter the global and regional climate of Earth (Houghton et al., 1990). Interesting to the microbiologists is the fact that the chemistry of the atmosphere is to a large extent the result of the Earth’s biosphere, and with that of microbial processes. For example, it was the evolution of oxygenic photosynthesis by cyanobacteria that allowed the production of significant amounts of O2 (Schidlowski, 1983; Holland, 1984). This microbial O2 production finally resulted in the accumulation of O2 in a so-far anoxic atmosphere, and thus resulted in one of the most dramatic shifts in the habitability of our planet, i.e., shift in the dominance of anaerobic to aerobic life.


Nitric Oxide Nitrous Oxide Wetland Soil Upland Soil Methanotrophic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. F., Farwell, S. O., Robinson, E., Pack, M. R., and Bamesberger, W. L., 1981, Biogenic sulfur source strengths, Environ. Sci. Technol. 15:1493–1498.CrossRefGoogle Scholar
  2. Adamsen, A. P. S., and King, G. M., 1993, Methane consumption in temperate and subarctic forest soils—rates, vertical zonation, and responses to water and nitrogen, Appl. Environ. Microbiol. 59:485–490.PubMedGoogle Scholar
  3. Alperin, M. J., and Reeburgh, W. S., (1984, Geochemical observations supporting anaerobic methane oxidation, in: Microbial Growth on C-1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, D.C., pp. 282–289.Google Scholar
  4. Anderson, I. C., and Levine, J. S., 1986, Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers, Appl. Environ. Microbiol. 51:938–945.PubMedGoogle Scholar
  5. Anderson, I. C., Poth, M., Homstead, J., and Burdige, D., 1993, A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis, Appl. Environ. Microbiol. 59:3525–3533.PubMedGoogle Scholar
  6. Andreae, M. O., and Jaeschke, W. A., 1992, Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions, in: Sulphur Cycling on the Continents, SCOPE Report 48 (R. W. Howarth, J. W. B. Stewart, and M. V. Ivanov, eds.), Wiley, Chichester, England, pp. 27–61.Google Scholar
  7. Aneja, V. P., Overton, J. H., Cupitt, L. T., Durham, J. L., and Wilson, W. E., 1979, Carbon disulphide and carbonyl sulphide from biogenic sources and their contributions to the global sulphur cycle, Nature 282:493–496.CrossRefGoogle Scholar
  8. Anthony, C., 1986, Bacterial oxidation of methane and methanol, Adv. Microb. Physiol. 27:113–210.PubMedCrossRefGoogle Scholar
  9. Bartell, U., Hofmann, U., Hofmann, R., Kreuzburg, B., Andreae, M. O., and Kesselmeier, J., 1993, COS and H2S fluxes over a wet meadow in relation to photosynthetic activity—an analysis of measurements made on 6 September 1990, Atmos. Environ. 27A:1851–1864.Google Scholar
  10. Bartlett, K. B., and Harriss, R. C., 1993, Review and assessment of methane emission from wetlands, Chemosphere 26:261–320.CrossRefGoogle Scholar
  11. Bauer, K., Seiler, W., and Giehl, H., 1979, CO-Produktion höherer Pflanzen an natürlichen Standorten, Z. Pflanzenphysiol. 94:219–230.Google Scholar
  12. Baumgärtner, M., and Conrad, R., 1992, Role of nitrate and nitrite for production and consumption of nitric oxide during denitrification in soil, FEMS Microbiol. Ecol. 101:59–65.Google Scholar
  13. Baumgärtner, M., Koschorreck, M., and Conrad, R., Oxidative consumption of nitric oxide by heterotrophic bacteria in soil, to be submitted.Google Scholar
  14. Bedard, C., and Knowles, R., 1989, Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers, Microbiol. Rev. 53:68–84.PubMedGoogle Scholar
  15. Bender, M., and Conrad, R., 1992, Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios, FEMS Microbiol. Ecol. 101:261–270.Google Scholar
  16. Bender, M., and Conrad, R., 1993, Kinetics of methane oxidation in oxic soils, Chemosphere 26:687–696.CrossRefGoogle Scholar
  17. Bender, M., and Conrad, R., 1994a, Methane oxidation activity in various soils and sediments: Occurrence, characteristics, vertical profiles and distribution on grain size fractions, J. Geophys. Res. 99:16531–16540.CrossRefGoogle Scholar
  18. Bender, M., and Conrad, R., 1994b, Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils, Biogeochem. 27:97–112.CrossRefGoogle Scholar
  19. Betlach, M. R., and Tiedje, J. M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol. 42:1074–1084.PubMedGoogle Scholar
  20. Bingemer, H. G., and Crutzen, P. J., 1987, The production of methane from solid wastes, J. Geophys. Res. 92:2181–1187.CrossRefGoogle Scholar
  21. Binnerup, S. J., Jensen, K., Revsbech, N. P., Jensen, M. H., and Soerensen, J., 1992, Denitrification, dissimilatory reduction of nitrate to ammonium, and nitrification in a bioturbated estuarine sediment as measured with 15N and microsensor techniques, Appl. Environ. Microbiol. 58:303–313.PubMedGoogle Scholar
  22. Blackmer, A. M., and Bremner, J. M., 1976, Potential of soil as a sink for atmospheric nitrous oxide, Geophys Res. Lett. 3:739–742.CrossRefGoogle Scholar
  23. Bleakley, B. H., and Tiedje, J. M., 1982, Nitrous oxide production by organisms other than nitrifiers or denitrifiers, Appl. Environ. Microbiol. 44:1342–1348.PubMedGoogle Scholar
  24. Bock, E., Koops, H. P., Harms, H., and Ahlers, B., 1991, The biochemistry of nitrifying organisms, in: Variations in Autotrophic Life (J. M. Shively and L. L. Barton, eds.), Academic Press, London, pp. 171–200.Google Scholar
  25. Born, M., Dörr, H., and Levin, I., 1990, Methane consumption in aerated soils of the temperate zone, Tellus 42B:2–8.Google Scholar
  26. Bosse, U., Frenzel, P., and Conrad, R., 1993, Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment, FEMS Microbiol. Ecol. 13:123–134.CrossRefGoogle Scholar
  27. Bouwman, A. F., 1990, Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere, in: Soils and the Greenhouse Effect (A. F. Bouwman, ed.), Wiley, Chichester, England, pp. 61–127.Google Scholar
  28. Bremner, J. M., and Blackmer, A. M., 1978, Nitrous oxide: Emission from soils during nitrification of fertilizer nitrogen, Science 199:295–296.PubMedCrossRefGoogle Scholar
  29. Bremner, J. M., and Steele, C. G., 1978, Role of microorganisms in the atmospheric sulfur cycle, Adv. Microb. Ecol. 2:155–201.CrossRefGoogle Scholar
  30. Breznak, J. A., 1975, Symbiotic relationships between termites and their intestinal microbiota, in: Symbiosis (D. H. Tennings and D. L. Lee, eds.), Cambridge University Press, Cambridge, England, pp. 559–580.Google Scholar
  31. Buresh, R. J., and Austin, E. R., 1988, Direct measurement of dinitrogen and nitrous oxide flux in flooded rice fields, Soil Sci. Soc. Am. J. 52:681–688.CrossRefGoogle Scholar
  32. Carlsen, H. N., Joergensen, L., and Degn, H., 1991, Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath), Appl. Microbiol. Biotechnol. 35:124–127.CrossRefGoogle Scholar
  33. Carroll, M. A., Heidt, L. E., Cicerone, R. J., and Prinn, R. G., 1986, OCS, H2S, and CS2 fluxes from a salt water marsh, J. Atmos. Chem. 4:375–395.CrossRefGoogle Scholar
  34. Castignetti, D., and Hollocher, T. C., 1981, Vigorous denitrification by a heterotrophic nitrifier of the genus Alcaligenes, Curr. Microbiol. 6:229–231.CrossRefGoogle Scholar
  35. Castignetti, D., and Hollocher, T. C., 1984, Heterotrophic nitrification among denitrifiers, Appl. Environ. Microbiol. 47:620–623.PubMedGoogle Scholar
  36. Castro, M. S., and Galloway, J. N., 1991, A comparison of sulfur-free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere, J. Geophys. Res. 96:15427–15437.CrossRefGoogle Scholar
  37. Castro, M. S., Peterjohn, W. T., Melillo, J. M., Steudler, P. A., Gholz, H. L., and Lewis, D., 1994, Effects of nitrogen fertilization on the fluxes of N2O, CH4, and CO2 from soils in a Florida slash pine plantation, Can. J. Forest Res. 24:9–13.CrossRefGoogle Scholar
  38. Chanton, J. P., and Dacey, J. W., 1991, Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition, in: Trace Gas Emissions by Plants (J. E. Rogers and W. B. Whitman, eds.), Academic Press, New York, pp. 65–92.Google Scholar
  39. Chin, M., and Davis, D. D., 1993, Clobal sources and sinks of OCS and CS2 and their distributions, Global Biogeochem. Cycles 7:321–337.CrossRefGoogle Scholar
  40. Cicerone, R. J., 1987, Changes in stratospheric ozone, Science 237:35–42.PubMedCrossRefGoogle Scholar
  41. Cicerone, R. J., and Oremland, R. S., 1988, Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles 2:299–327.CrossRefGoogle Scholar
  42. Collins, N. M., and Wood, T. G., 1984, Termites and atmospheric gas production, Science 224:84–86.PubMedCrossRefGoogle Scholar
  43. Conrad, R., 1984, Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases, in: Current Perspectives in Microbial Ecology (M. G. Klug and C. A. Reddy, eds.), American Society for Microbiology, Washington, D.C., pp. 461–467.Google Scholar
  44. Conrad, R., 1988, Biogeochemistry and ecophysiology of atmospheric CO and H2, Adv. Microb. Ecol. 10:231–283.CrossRefGoogle Scholar
  45. Conrad, R., 1989, Control of methane production in terrestrial ecosystems, in: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Dahlem Konferenzen (M. O. Andreae and D. S. Schimel, eds.), Wiley, Chichester, England, pp. 39–58.Google Scholar
  46. Conrad, R., 1990, Flux of NOx between soil and atmosphere: Importance and soil microbial metabolism, in: Denitrification in Soil and Sediment (N. P. Revsbech and J. Soerensen, eds.), Plenum Press, New York, pp. 105–128.Google Scholar
  47. Conrad, R., 1993, Mechanisms controlling methane emission from wetland rice fields, in: Biogeochemistry of Global Change: Radiative Trace Gases (R. S. Oremland, ed.), Chapman & Hall, New York, pp. 317–335.CrossRefGoogle Scholar
  48. Conrad, R., 1995, Anaerobic hydrogen metabolism in aquatic sediments, Mitt. Internat. Ver. Limnol. 25: in press.Google Scholar
  49. Conrad, R., and Rothfuss, F., 1991, Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium, Biol. Fertil. Soils 12:28–32.CrossRefGoogle Scholar
  50. Conrad, R., and Seiler, W., 1979, Field measurements of hydrogen evolution by nitrogen-fixing legumes, Soil Biol. Biochem. 11:689–690.CrossRefGoogle Scholar
  51. Conrad, R., and Seiler, W., 1980, Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget, J. Geophys. Res. 85:5493–5498.CrossRefGoogle Scholar
  52. Conrad, R., and Seiler, W., 1981, Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes, Soil Biol. Biochem. 13:43–49.CrossRefGoogle Scholar
  53. Conrad, R., and Seiler, W., 1982, Utilization of traces of carbon monoxide by aerobic oligotrophic microorganisms in ocean, lake and soil, Arch. Microbiol. 132:41–46.CrossRefGoogle Scholar
  54. Conrad, R., and Seiler, W., 1985a, Influence of temperature, moisture and organic carbon on the flux of H2 and CO between soil and atmosphere. Field studies in subtropical regions, J. Geophys. Res. 90:5699–5709.CrossRefGoogle Scholar
  55. Conrad, R., and Seiler, W., 1985b, Characteristics of abiological CO formation from soil organic matter, humic acids, and phenolic compounds, Environ. Sci. Technol. 19:1165–1169.PubMedCrossRefGoogle Scholar
  56. Conrad, R., Meyer, O., and Seiler, W., 1981, Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil, Appl. Environ. Microbiol. 42:211–215.PubMedGoogle Scholar
  57. Conrad, R., Aragno, M., and Seiler, W., 1983, Production and consumption of hydrogen in a eutrophic lake, Appl. Environ. Microbiol. 45:502–510.PubMedGoogle Scholar
  58. Conrad, R., Schütz, H., and Seiler, W., 1988, Emission of carbon monoxide from submerged rice fields into the atmosphere, Atmos. Environ. 22:821–823.CrossRefGoogle Scholar
  59. Cord-Ruwisch, R., Seitz, H. J., and Conrad, R., 1988, The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor, Arch. Microbiol. 149:350–357.CrossRefGoogle Scholar
  60. Costa, C., Macedo, A., Moura, I., Moura, J. J. G., LeGall, J., Berlier, Y., Liu, M. Y., and Payne, W. J., 1990, Regulation of the hexaheme nitrite/nitric oxide reductase of Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli—A mass spectrometric study, FEBS Lett. 276:67–70.PubMedCrossRefGoogle Scholar
  61. Coyne, M. S., and Tiedje, J. M., 1990, Induction of denitrifying enzymes in oxygen-limited Achromobacter cycloclastes continuous culture, FEMS Microbiol. Ecol. 73:263–270.CrossRefGoogle Scholar
  62. Crill, P. M., Harriss, R. C., and Bartlett, K. B., 1991, Methane fluxes from terrestrial wetland environments, in: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (J. E. Rogers and W. B. Whitman, eds.), American Society for Microbiology, Washington, D.C., pp. 91–109.Google Scholar
  63. Crutzen, P. J., 1970, The influence of nitrogen oxides on the atmospheric ozone content, Q. J. R. Meteor. Soc. 96:320–325.CrossRefGoogle Scholar
  64. Crutzen, P. J., 1976, The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett. 3:73–76.CrossRefGoogle Scholar
  65. Crutzen, P. J., 1979, The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Annu. Rev. Earth Planet. Sci. 7:443–472.CrossRefGoogle Scholar
  66. Crutzen, P. J., and Gidel, L. T., 1983, A two-dimensional photochemical model of the atmosphere 2. The tropospheric budgets of the anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone, J. Geophys. Res. 88:6641–6661.CrossRefGoogle Scholar
  67. Crutzen, P. J., and Schmailzl, U., 1983, Chemical budgets of the stratosphere, Planet. Space Sci. 31:1009–1032.CrossRefGoogle Scholar
  68. Cunningham, S. D., Kapulnik, Y., and Phillips, D. A., 1986, Distribution of hydrogen-metabolizing bacteria in alfalfa field soil, Appl. Environ. Microbiol. 52:1091–1095.PubMedGoogle Scholar
  69. Davidson, E. A., 1991, Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, in: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (J. E. Rogers and W. B. Whitman, eds.), American Society for Microbiology, Washington, D.C., pp. 219–235.Google Scholar
  70. Davidson, E. A., 1993, Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil, in: Biogeochemistry of Global Change (R. S. Oremland, ed.), Chapman & Hall, New York, pp. 369–386.CrossRefGoogle Scholar
  71. Derikx, P. J. L., Simons, F. H. M., Dencamp, H. J. M. O., VanderDrift, C., VanGriensven, L. J. L. D., and Vogels, G. D., 1991, Evolution of volatile sulfur compounds during laboratory-scale incubations and indoor preparation of compost used as a substrate in mushroom cultivation, Appl. Environ. Microbiol. 57:563–567.PubMedGoogle Scholar
  72. Dickinson, R. E., and Cicerone, R. J., 1986, Future global warming from atmospheric trace gases, Nature 319:109–115.CrossRefGoogle Scholar
  73. Dörr, H., Katruff, L., and Levin, I., 1993, Soil texture parameterization of the methane uptake in aerated soils, Chemosphere 26:697–713.CrossRefGoogle Scholar
  74. Dugnani, L., Wyrsch, I., Gandolla, M., and Aragno, M., 1986, Biological oxidation of hydrogen in soils flushed with a mixture of H2, CO2, O2 and N2, FEMS Microbiol. Ecol. 38:347–351.CrossRefGoogle Scholar
  75. Firestone, M. K., and Davidson, E. A., 1989, Microbiological basis of NO and N2O production and consumption in soil, in: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Dahlem Konferenzen (M. O. Andreae and D. S. Schimel, eds.), Wiley, Chichester, England, pp. 7–21.Google Scholar
  76. Firestone, M. K., Firestone, R. B., and Tiedje, J. M., 1979, Nitric oxide as intermediate in denitrification: Evidence from nitrogen-13 isotope exchange, Biochem. Biophys. Res. Commun. 91:10–16.PubMedCrossRefGoogle Scholar
  77. Freney, J. R., and Denmead, O. T., 1992, Factors controlling ammonia and nitrous oxide emissions from flooded rice fields, Ecol. Bull (Copenhagen) 42:188–194.Google Scholar
  78. Freney, J. R., Denmead, O. T., Watanabe, I., and Craswell, E. T., 1981, Ammonia and nitrous oxide losses following applications of ammonium sulfate to flooded rice, Aust. J. Agric. Res. 32:37–45.CrossRefGoogle Scholar
  79. Fuchs, G., 1986, CO2 fixation in acetogenic bacteria: Variations on a theme, FEMS Microbiol. Rev. 39:181–213.CrossRefGoogle Scholar
  80. Galbally, I. E., and Johansson, C., 1989, A model relating laboratory measurements of rates of nitric oxide production and field measurements of nitric oxide emission from soils, J. Geophys. Res. 94:6473–6480.CrossRefGoogle Scholar
  81. Galbally, I. E., Freney, J. R., Muirhead, W. A., Simpson, J. R., Trevitt, A. C. F., and Chalk, P. M., 1987, Emission of nitrogen oxides (NOx) from a flooded soil fertilized with urea: Relation to other nitrogen loss processes, J. Atmos. Chem. 5:343–365.CrossRefGoogle Scholar
  82. Goldan, P. D., Kuster, W. C., Albritton, D. L., and Fehsenfeid, F. C., 1987, The measurement of natural sulfur emissions from soils and vegetation: Three sites in the Eastern United States revisited, J. Atmos. Chem. 5:439–467.CrossRefGoogle Scholar
  83. Goldan, P. D., Fall, R., Kuster, W. C., and Fehsenfeid, F. C., 1988, Uptake of COS by growing vegetation: A major troposheric sink, J. Geophys. Res. 93:14186–14192.CrossRefGoogle Scholar
  84. Hackstein, J. H. P., and Stumm, C. K., 1994, Methane production in terrestrial arthropods, Proc. Natl. Acad. Sci. USA 91:5441–5445.PubMedCrossRefGoogle Scholar
  85. Häring, V., and Conrad, R., 1991, Kinetics of H2 oxidation in respiring and denitrifying Paracoccus denitrificans, FEMS Microbiol. Lett. 78:259–264.CrossRefGoogle Scholar
  86. Häring, V., and Conrad, R., 1994, Demonstration of 2 different H2-oxidizing activities in soil using an H2 consumption and a tritium exchange assay, Biol. Fertil. Soils 17:125–128.CrossRefGoogle Scholar
  87. Häring, V., Klüber, H. D., and Conrad, R., 1994, Localization of atmospheric H2-oxidizing soil hydrogenases in different particle fractions of soil, Biol. Fertil. Soils 18:109–114.CrossRefGoogle Scholar
  88. Henrichs, S. M., and Reeburgh, W. S., 1987, Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy, Geomicrobiol. J. 5:191–237.CrossRefGoogle Scholar
  89. Heyer, J., Malashenko, Y., Berger, U., and Budkova, E., 1984, Verbreitung methanotropher Bakterien, Z. Allg. Mikrobiol. 24:725–744.CrossRefGoogle Scholar
  90. Hines, M. E., and Morrison, M. C., 1992, Emissions of biogenic sulfur gases from Alaskan tundra, J. Geophys. Res. 97:16703–16707.CrossRefGoogle Scholar
  91. Hines, M. E., Pelletier, R. E., and Crill, P. M., 1993, Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing, J. Geophys. Res. 98:8991–8999.CrossRefGoogle Scholar
  92. Hofmann, U., Hofmann, R., and Kesselmeier, J., 1992, Field measurements of reduced sulfur compounds over wheat during a growing season, in: Precipitation Scavenging and Atmosphere-Surface Exchange, Vol. 2 (S. E. Schwartz and W. G. N. Slinn, eds.), Hemisphere Publishing Corporation, Washington, DC, pp. 967–977.Google Scholar
  93. Holland, H. D., 1984, The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton, N.J.Google Scholar
  94. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), 1990, Climate Change. The IPCC Scientific Assessment, Cambridge University Press, Cambridge, England.Google Scholar
  95. Huber, B., 1994, Austausch flüchtiger Schwefelverbindungen in land-und forstwirtschaftlichen Ö kosystemen, Ph.D. thesis, Wissenschafts-Verlag Dr. W. Maraun, Frankfurt, Germany.Google Scholar
  96. Hutchinson, G. L., and Davidson, E. A., 1993, Processes for production and consumption of gaseous nitrogen oxides in soil, in: Agricultural Ecosystem Effects on Trace Gases and Global Climate Change (L. A. Harper et al., eds.), American Society of Agronomy, Madison, Wis., pp. 79–93.Google Scholar
  97. Hutchinson, G. L., Guenzi, W. D., and Livingston, G. P., 1993, Soil water controls on aerobic soil emission of gaseous nitrogen oxides, Soil Biol. Biochem. 25:1–9.CrossRefGoogle Scholar
  98. Hyman, M. R., and Wood, P. M., 1983, Methane oxidation by Nitrosomonas europaea, Biochem. J. 212:31–37.PubMedGoogle Scholar
  99. Isaksen, I. S. A., 1988, Is the oxidizing capacity of the atmosphere changing? in: The Changing Atmosphere. Dahlem Konferenzen (F. S. Rowland and I. S. A. Isaksen, eds.), Wiley, Chichester, England, pp. 141–157.Google Scholar
  100. Iversen, N., and Joergensen, B. B., 1985, Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark), Limnol. Oceanogr. 30:944–955.CrossRefGoogle Scholar
  101. Iversen, N., Oremland, R. S., and Klug, M. J., 1987, Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation, Limnol. Oceanogr. 32:815–824.CrossRefGoogle Scholar
  102. Joergensen, B. B., and Okholm-Hansen, B., 1985, Emissions of biogenic sulfur gases from a Danish estuary, Atmos. Environ. 19:1737–1749.CrossRefGoogle Scholar
  103. Joergensen, K. S., Jensen, H. B., and Soerensen, J., 1984, Nitrous oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations, Can. J. Microbiol. 30:1073–1078.CrossRefGoogle Scholar
  104. Johansson, C., and Galbally, I. E., 1984, Production of nitric oxide in loam under aerobic and anaerobic conditions, Appl. Environ. Microbiol. 47:1284–1289.PubMedGoogle Scholar
  105. Jones, H. A., and Nedwell, D. B., 1990, Soil atmosphere concentrations profiles and methane emission rates in the restoration covers above landfill sites: Equipment and preliminary results, Waste Manage Res. 8:21–31.Google Scholar
  106. Jones, H. A., and Nedwell, D. B., 1993, Methane emission and methane oxidation in land-fill cover soil, FEMS Microbiol. Ecol. 102:185–195.CrossRefGoogle Scholar
  107. Jones, R. D., and Morita, R. Y., 1983a, Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea, Appl. Environ. Microbiol. 45:401–410.PubMedGoogle Scholar
  108. Jones, R. D., and Morita, R. Y., 1983b, Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers, Can. J. Microbiol. 29:1545–1551.CrossRefGoogle Scholar
  109. Jones, R. D., Morita, R. Y., and Griffiths, R. P., 1984, Method for estimating in situ chemolithotrophic ammonium oxidation using carbon monoxide oxidation, Mar. Ecol. Progr. Ser. 17: 259–269.CrossRefGoogle Scholar
  110. Junge, C. E., 1963, Air Chemistry and Radioactivity, Academic Press, New York.Google Scholar
  111. Kalkowski, I., and Conrad, R., 1991, Metabolism of nitric oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus, FEMS Microbiol. Lett. 82:107–112.CrossRefGoogle Scholar
  112. Kanda, K., Tsuruta, H., and Minami, K., 1992, Emission of dimethyl sulfide, carbonyl sulfide, and carbon disulfide from paddy fields, Soil Sci. Plant Nutr. 38:709–716.CrossRefGoogle Scholar
  113. Karrasch, M., Bott, M., and Thauer, R. K., 1989, Carbonic anhydrase activity in acetate grown Methanosarcina barkeri, Arch. Microbiol. 151:137–142.CrossRefGoogle Scholar
  114. Katayama, Y., Narahara, Y., Inoue, Y., Amano, F., Kanagawa, T., and Kuraishi, H., 1992, A thiocyanate hydrolase of Thiobacillus thioparus—A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate, J. Biol. Chem. 267:9170–9175.PubMedGoogle Scholar
  115. Keller, M., Kaplan, W. A., and Wofsy, S. C., 1986, Emissions of N2O, CH4 and CO2 from tropical forest soils, J. Geophys. Res. 91:11791–11802.CrossRefGoogle Scholar
  116. Keller, M., Veldkamp, E., Weitz, A. M., and Reiners, W. A., 1993, Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica, Nature 365:244–246.CrossRefGoogle Scholar
  117. Kelly, D. P., and Smith, N. A., 1990, Organic sulfur compounds in the environment. Biogeochemistry, microbiology, and ecological aspects, Adv. Microb. Ecol. 11:345–385.Google Scholar
  118. Kelly, D. P., Malin, G., and Wood, A. P., 1993, Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens, in: Microbial Growth on C1 Compounds (J. C. Murrell and D. P. Kelly, eds.), Intercept, Andover, Mass., pp. 47–63.Google Scholar
  119. Kesselmeier, J., 1992, Plant physiology and the exchange of trace gases between vegetation and the atmosphere, in: Precipitation Scavenging and Atmosphere-Surface Exchange, Vol. 2 (S. E. Schwartz and W. G. N. Slinn, eds.), Hemisphere Publishing Corporation, Washington, DC, pp. 949–966.Google Scholar
  120. Kesselmeier, J., and Merk, L., 1993, Exchange of carbonyl sulfide (COS) between agricultural plants and the atmosphere—studies on the deposition of COS to peas, corn and rapeseed, Biogeochemistry 23:47–59.Google Scholar
  121. Khalil, M. A. K., and Rasmussen, R. A., 1988, Carbon monoxide in the earth’s atmosphere: Indications of a global increase, Nature 332:242–245.CrossRefGoogle Scholar
  122. Khalil, M. A. K., and Rassmussen, R. A., 1990a, Atmospheric methane: Recent global trends, Environ. Sci. Technol. 24:549–553.CrossRefGoogle Scholar
  123. Khalil, M. A. K., and Rassmussen, R. A., 1990b, Global increase of atmospheric molecular hydrogen, Nature 347:743–745.CrossRefGoogle Scholar
  124. Khalil, M. A. K., and Rassmussen, R. A., 1990c, The global cycle of carbon monoxide: Trends and mass balance, Chemosphere 20:227–242.CrossRefGoogle Scholar
  125. Khalil, M. A. K., and Rasmussen, R. A., 1992, The global sources of nitrous oxide, J. Geophys. Res. 97:14651–14660.CrossRefGoogle Scholar
  126. Khalil, M. A. K., Rasmussen, R. A., French, J. R. J., and Holt, J. A., 1990, The influence of termites on atmospheric trace gases: CH4, CO2, CHC13, N2O, CO, H2, and light hydrocarbons, J. Geophys. Res. 95:3619–3634.CrossRefGoogle Scholar
  127. King, G. M., 1990, Dynamics and controls of methane oxidation in a Danish wetland sediment, FEMS Microbiol. Ecol. 74:309–323.Google Scholar
  128. King, G. M., 1993, Ecophysiological characteristics of obligate methanotrophic bacteria and methane oxidation in situ, in: Microbial Growth on C1 Compounds (J. C. Murrell and D. P. Kelly, eds.), Intercept, Andover, Mass., pp. 303–313.Google Scholar
  129. King, G. M., and Adamsen, A. P. S., 1992, Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra, Appl. Environ. Microbiol. 58:2758–2763.PubMedGoogle Scholar
  130. Klemedtsson, L., Hanson, G., and Mosier, A., 1990, The use of acetylene for the quantification of N2 and N2O production from biological processes in soil, in: Denitrification in Soil and Sediment (N. P. Revsbech and J. Soerensen, eds.), Plenum Press, New York, pp. 167–180.Google Scholar
  131. Klüber, H. D., and Conrad, R., 1993, Ferric iron-reducing Shewanella putrefaciens and N2-fixing Bradyrhizobium japonicum with uptake hydrogenase are unable to oxidize atmospheric H2, FEMS Microbiol. Lett. 111:337–341.CrossRefGoogle Scholar
  132. Kluczewski, S. M., Brown, K. A., and Bell, J. N. B., 1985, Deposition of carbonyl sulphide to soils, Atmos. Environ. 19:1295–1299.CrossRefGoogle Scholar
  133. Knowles, R., 1982, Denitrification, Microbiol. Rev. 46:43–70.PubMedGoogle Scholar
  134. Körner, H., 1993, Anaerobic expression of nitric oxide reductase from denitrifying Pseudomonas stutzeri, Arch. Microbiol 159:410–416.CrossRefGoogle Scholar
  135. Körner, H., and Zumft, W. G., 1989, Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri, Appl. Environ. Microbiol. 55:1670–1676.PubMedGoogle Scholar
  136. Körner, H., Frunzke, K., Döhler, K., and Zumft, W. G., 1987, Immunochemical patterns of distribution of nitrous oxide reductase and nitrite reductase (cytochrome cd1) among denitrifying Pseudomonas, Arch. Microbiol. 148:20–24.PubMedCrossRefGoogle Scholar
  137. Koschorreck, M., and Conrad, R., 1993, Oxidation of atmospheric methane in soil: Measurements in the field, in soil cores and in soil samples, Global Biogeochem. Cycles 7:109–121.CrossRefGoogle Scholar
  138. Krämer, H., and Conrad, R., 1993, Measurement of dissolved H2 concentrations in methanogenic environments with a gas diffusion probe, FEMS Microbiol. Ecol. 12:149–158.CrossRefGoogle Scholar
  139. Krämer, M., Baumgärtner, M., Bender, M., and Conrad, R., 1990, Consumption of NO by methanotrophic bacteria in pure culture and in soil, FEMS Microbiol. Ecol. 73:345–350.CrossRefGoogle Scholar
  140. LaFavre, J. S., and Focht, D. D., 1983, Conservation in soil of H2 liberated from N2 fixation by hup nodules, Appl. Environ. Microbiol. 46:304–311.Google Scholar
  141. Lamb, B., Westberg, H., Allwine, G., Bamesberger, L., and Guenther, A., 1987, Measurement of biogenic sulfur emissions from soils and vegetation: Application of dynamic enclosure methods with Natusch filter and GC/FPD analysis, J. Atmos. Chem. 5:469–491.CrossRefGoogle Scholar
  142. Lehmann, S., and Conrad, R., Characteristics of turnover of carbonyl sulfide in four different soils, J. Atmospher. Chem., in press.Google Scholar
  143. Lidstrom, M. E., and Somers, L., 1984, Seasonal study of methane oxidation in Lake Washington, Appl. Environ. Microbiol. 47:1255–1260.PubMedGoogle Scholar
  144. Liebl, K. H., and Seiler, W., 1976, CO and H2 destruction at the soil surface, in: Microbial Production and Utilization of Gases (H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds.), E. Goltze, Göttingen, Germany, pp. 215–229.Google Scholar
  145. Lindau, C. W., Patrick, W. H., DeLaune, R. D., and Reddy, K. R., 1990, Rate of accumulation and emission of N2, N2O and CH4 from a flooded rice soil, Plant Soil 129:269–276.Google Scholar
  146. Logan, J. A., 1983, Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res. 88:10785–10807.CrossRefGoogle Scholar
  147. Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86:7210–7254.CrossRefGoogle Scholar
  148. Lovelock, J. E., and Margulis, L., 1974, Atmospheric homeostasis by and for the biosphere: The GAIA hypothesis, Tellus 26:2–10.CrossRefGoogle Scholar
  149. Lovley, D. R., and Goodwin, S., 1988, Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments, Geochim. Cosmochim. Acta 52:2993–3003.CrossRefGoogle Scholar
  150. Lu, Y., and Khalil, M. A. K., 1993, Methane and carbon monoxide in OH chemistry—the effects of feedbacks and reservoirs generated by the reactive products, Chemosphere 26:641–655.CrossRefGoogle Scholar
  151. Matson, P. A., and Vitousek, P. M., 1990, Ecosystem approach to a global nitrous oxide budget, BioScience 40:667–672.CrossRefGoogle Scholar
  152. Matthews, E., Fung, I., and Lerner, J., 1991, Methane emission from rice cultivation: Geographic and seasonal distribution of cultivated areas and emissions, Global Biogeochem. Cycles 5:3–24.CrossRefGoogle Scholar
  153. Megraw, S. R., and Knowles, R., 1987, Methane production and consumption in a cultivated humisol, Biol. Fertil. Soils 5:56–60.CrossRefGoogle Scholar
  154. Miller, L. G., Oremland, R. S., and Paulsen, S., 1986, Measurement of nitrous oxide reductase activity in aquatic sediments, Appl. Environ. Microbiol. 51:18–24.PubMedGoogle Scholar
  155. Minami, K., and Fukushi, S., 1981a, Detection of carbonyl sulfide among gases produced by the decomposition of cystine in paddy soils, Soil Sci. Plant Nutr. 27:105–109.CrossRefGoogle Scholar
  156. Minami, K., and Fukushi, S., 1981b, Volatilization of carbonyl sulfide from paddy soils treated with sulfur-containing substances, Soil Sci. Plant Nutr. 27:339–345.CrossRefGoogle Scholar
  157. Möller, D., 1984, On the global natural sulphur emission, Atmos. Environ. 18:29–39.CrossRefGoogle Scholar
  158. Mörsdorf, G., Frunzke, K., Gadkari, D., and Meyer, O., 1992, Microbial growth on carbon monoxide, Biodegradation 3:61–82.CrossRefGoogle Scholar
  159. Mosier, A. R., Mohanty, S. K., Bhadrachalam, A., and Chakravorti, S. P., 1990, Evolution of dinitrogen and nitrous oxide from soil to the atmosphere through rice plants, Biol. Fertil. Soils 9:61–67.CrossRefGoogle Scholar
  160. Nesbit, S. P., and Breitenbeck, G. A., 1992, A laboratory study of factors influencing methane uptake by soils, Agric. Ecosyst. Environ. 41:39–54.CrossRefGoogle Scholar
  161. Neue, H. U., and Roger, P. A., 1993, Rice agriculture: Factors controlling emissions, in: Atmospheric Methane: Sources, Sinks, and Role in Global Change (M. A. K. Khalil, ed.), Springer, Berlin, pp. 254–298.CrossRefGoogle Scholar
  162. Neue, H. U., and Sass, R. L., 1994, Trace gas emissions from rice fields, in: Global Atmospheric-Biospheric Chemistry (R. G. Prinn, ed.), Plenum Press, New York, pp. 119–147.CrossRefGoogle Scholar
  163. Novelli, P. C., Masarie, K. A., Tans, P. P., and Lang, P. M., 1994, Recent changes in atmospheric carbon monoxide, Science 263:1587–1590.PubMedCrossRefGoogle Scholar
  164. Oremland, R. S., and Culbertson, C. W., 1992, Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation, Appl. Environ. Microbiol. 58:2983–2992.PubMedGoogle Scholar
  165. Papen, H., VonBerg, R., Hinkel, I., Thoene, B., and Rennenberg, H., 1989, Heterotrophic nitrification by Alcaligenes faecalis: NO2 , NO3 , N2O, and NO production in exponentially growing cultures, Appl. Environ. Microbiol. 55:2068–2072.PubMedGoogle Scholar
  166. Papen, H., Hellmann, B., Papke, H., and Rennenberg, H., 1993, Emission of N-oxides from acid irrigated and limed soils within a northern hardwood forest ecosystem, in: Biogeochemistry of Global Change: Radiative Trace Gases (R. S. Oremland, ed.), Chapman & Hall, New York, pp. 245–260.CrossRefGoogle Scholar
  167. Peters, V., and Conrad, R., 1995, Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils, Appl. Env. Microbiol. 61:1673–1676.Google Scholar
  168. Popelier, F., Liessens, J., and Verstraete, W., 1985, Soil H2-uptake in relation to soil properties and rhizobial H2-production, Plant Soil 85:85–96.CrossRefGoogle Scholar
  169. Poth, M., 1986, Dinitrogen production from nitrite by a Nitrosomonas isolate, Appl. Environ. Microbiol. 52:957–959.PubMedGoogle Scholar
  170. Poth, M., and Focht, D. D., 1985, 15N kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification, Appl. Environ. Microbiol. 49:1134–1141.PubMedGoogle Scholar
  171. Prinn, R. G., 1994, Global atmospheric-biospheric chemistry, in: Global Atmospheric-Biospheric Chemistry (R. G. Prinn, ed.), Plenum Press, New York, pp. 1–18.CrossRefGoogle Scholar
  172. Protoschill-Krebs, G., and Kesselmeier, J., 1992, Enzymatic pathways for the consumption of carbonyl sulphide (COS) by higher plants, Bot. Acta 105:206–212.Google Scholar
  173. Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R., and Schlesinger, M., 1987, Climate-chemical interactions and effects of changing atmospheric trace gases, Rev. Geophys. 25:1441–1482.CrossRefGoogle Scholar
  174. Rasmussen, R. A., and Khalil, M. A. K., 1983, Global production of methane by termites, Nature 301:700–702.CrossRefGoogle Scholar
  175. Reddy, K. R., and Patrick Jr., W. H., 1986, Fate of fertilizer nitrogen in the rice root zone, Soil Sci. Soc. Am. J. 50:649–651.CrossRefGoogle Scholar
  176. Reddy, K. R., Patrick Jr., W. H., and Lindau, C. W., 1989, Nitrification-denitrification at the plant root-sediment interface in wetlands, Limnol. Oceanogr. 34:1004–1013.CrossRefGoogle Scholar
  177. Reeburgh, W. S., Whalen, S. C., and Alperin, M. J., 1993, The role of methylotrophy in the global methane budget in: Microbial Growth on C1 Compounds (J. C. Murrell and D. P. Kelly, eds.), Intercept, Andover, Mass., pp. 1–14.Google Scholar
  178. Remde, A., and Conrad, R., 1990, Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite, Arch. Microbiol. 154:187–191.CrossRefGoogle Scholar
  179. Remde, A., and Conrad, R., 1991a, Role of nitrification and denitrification for NO metabolism in soil, Biogeochemistry 12:189–205.CrossRefGoogle Scholar
  180. Remde, A., and Conrad, R., 1991b, Metabolism of nitric oxide in soil and denitrifying bacteria, FEMS Microbiol. Ecol. 85:81–93.CrossRefGoogle Scholar
  181. Remde, A., Slemr, F., and Conrad, R., 1989, Microbial production and uptake of nitric oxide in soil, FEMS Microbiol. Ecol. 62:221–230.CrossRefGoogle Scholar
  182. Remde, A., Ludwig, J., Meixner, F. X., and Conrad, R., 1993, A study to explain the emission of nitric oxide from a marsh soil, J. Atm. Chem. 17:249–275.CrossRefGoogle Scholar
  183. Robertson, G. P., 1993, Fluxes of nitrous oxide and other nitrogen trace gases from intensively managed landscapes: A global perspective, in: Agricultural Ecosystem Effects on Trace Gases and Global Climate Change (L. A. Harper et al., eds.), American Society of Agronomy, Madison, Wis., pp. 95–108.Google Scholar
  184. Rothfuss, F., and Conrad, R., 1994, Development of a gas diffusion probe for the determination of methane concentrations and diffusion characteristics in flooded paddy soil, FEMS Microbiol. Ecol. 14:307–318.CrossRefGoogle Scholar
  185. Rouland, C., Brauman, A., Labat, M., and Lepage, M., 1993, Nutritional factors affecting methane emission from termites, Chemosphere 26:617–622.CrossRefGoogle Scholar
  186. Rudolph, J., Rothfuss, F., and Conrad, R., Flux between soil and atmosphere, vertical concentration profiles in soil, and turnover of nitric oxide: 1. Measurements on a model soil core, J. Atmospher. Chem., submitted.Google Scholar
  187. Ryden, J. C., 1981, N2O exchange between a grassland soil and the atmosphere, Nature 292:235–237.CrossRefGoogle Scholar
  188. Sahrawat, K. L. and Keeney, D. R., 1986, Nitrous oxide emission from soils, Adv. Soil Sci. 4:103–148.CrossRefGoogle Scholar
  189. Samuelsson, M.-O., 1985, Dissimilatory nitrate reduction to nitrite, nitrous oxide, and ammonium by Pseudomonas putrefaciens, Appl. Environ. Microbiol. 50:812–815.PubMedGoogle Scholar
  190. Schäfer, F., and Conrad, R., 1993, Metabolism of nitric oxide by Pseudomonas stutzeri in culture and in soil, FEMS Microbiol. Ecol. 102:119–127.CrossRefGoogle Scholar
  191. Scharffe, D., Hao, W. M., Donoso, L., Crutzen, P. J., and Sanhueza, E., 1990, Soil fluxes and atmospheric concentration of CO and CH4 in the northern part of the Guayana Shield, Venezuela, J. Geophys. Res. 95:22475–22480.CrossRefGoogle Scholar
  192. Schidlowski, M., 1983, Evolution of photoautotrophy and early atmospheric oxygen levels, Precambrian Res. 20:319–335.CrossRefGoogle Scholar
  193. Schimel, J. P., Holland, E. A., and Valentine, D., 1993, Controls on methane flux from terrestrial ecosystems, in: Agricultural Ecosystem Effects on Trace Gases and Global Climate Change (L. A. Harper et al., ed.), American Society of Agronomy, Madison, Wis., pp. 167–182.Google Scholar
  194. Schmidt, U., 1974, Molecular hydrogen in the atmosphere, Tellus 26:78–90.CrossRefGoogle Scholar
  195. Schmidt, U., and Conrad, R., 1993, Hydrogen, carbon monoxide, and methane dynamics in Lake Constance, Limnol. Oceanogr. 38:1214–1226.CrossRefGoogle Scholar
  196. Schuler, S., and Conrad, R., 1990, Soils contain two different activities for oxidation of hydrogen, FEMS Microbiol. Ecol. 73:77–84.CrossRefGoogle Scholar
  197. Schuler, S., and Conrad, R., 1991, Hydrogen oxidation in soil following rhizobial H2 production due to N2 fixation by a Vicia faba-Rhizobium leguminosarum symbiosis, Biol. Fertil. Soils 11:190–195.CrossRefGoogle Scholar
  198. Schuster, M., and Conrad, R., 1992, Metabolism of nitric oxide and nitrous oxide during nitrification and denitrification in soil at different incubation conditions, FEMS Microbiol. Ecol. 101:133–143.Google Scholar
  199. Schütz, H., Conrad, R., Goodwin, S., and Seiler, W., 1988, Emission of hydrogen from deep and shallow freshwater environments, Biogeochemistry 5:295–311.CrossRefGoogle Scholar
  200. Schütz, H., Seiler, W., and Rennenberg, H., 1990, Soil and land use related sources and sinks of methane (CH4) in the context of the global methane budget, in: Soils and the Greenhouse Effect (A. F. Bouwman, ed.), Wiley, Chichester, England, pp. 269–285.Google Scholar
  201. Schütz, H., Schröder, P., and Rennenberg, H., 1991, Role of plants in regulating the methane flux to the atmosphere, in: Trace Gas Emissions by Plants (T. D. Sharkey, E. A. Holland, and H. A. Mooney, eds.), Academic Press, San Diego, Calif., pp. 29–63.Google Scholar
  202. Sebacher, D. I., Harriss, R. C., and Bartlett, K. B., 1985, Methane emissions to the atmosphere through aquatic plants, J. Environ. Qual. 14:40–46.CrossRefGoogle Scholar
  203. Seiler, W., 1978, The influence of the biosphere on the atmospheric CO and H2 cycles, in: Environmental Biogeochemistry and Geomicrobiology, Vol. 3 (W. Krumbein, ed.), Ann Arbor Science Publishers, Ann Arbor, Mich., pp. 773–810.Google Scholar
  204. Seiler, W., and Conrad, R., 1981, Field measurements of natural and fertilizer induced N2O release rates from soils, J. Air Poll. Contr. Assoc. 31:767–772.CrossRefGoogle Scholar
  205. Seiler, W., Giehl, H., and Bunse, G., 1978, The influence of plants on atmospheric carbon monoxide and dinitrogen oxide, Pageoph 116:439–451.CrossRefGoogle Scholar
  206. Seiler, W., Conrad, R., and Scharffe, D., 1984, Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils, J. Atmos. Chem. 1:171–186.CrossRefGoogle Scholar
  207. Seitzinger, S. P., 1990, Denitrification in aquatic sediments, in: Denitrification in Soil and Sediment (N. P. Revsbech and J. Soerensen, eds.), Plenum Press, New York, pp. 301–322.Google Scholar
  208. Sexstone, A. J., and Mains, C. N., 1990, Production of methane and ethylene in organic horizons of spruce forest soils, Soil Biol. Biochem. 22:135–139.CrossRefGoogle Scholar
  209. Sexstone, A. J., Revsbech, N. P., Parkin, T. B., and Tiedje, J. M., 1985, Direct measurement of oxygen profiles and denitrification rates in soil aggregates, Soil Sci. Soc. Am J. 49:645–651.CrossRefGoogle Scholar
  210. Sieburth, J. M., 1987, Contrary habitats for redox-specific processes: Methanogenesis in oxic waters and oxidation in anoxic waters, in: Microbes in the Sea (M. A. Sleigh, ed.), Ellis Horwood, Chichester, England, pp. 11–38.Google Scholar
  211. Singh, H. B., 1987, Reactive nitrogen in the troposphere. Chemistry and transport of NOx and PAN, Environ. Sci. Technol. 21:320–327.PubMedCrossRefGoogle Scholar
  212. Skujins, J., 1978, History of abiontic soil enzyme research, in: Soil Enzymes (R. G. Burns, ed.), Academic Press, London, pp. 1–49.Google Scholar
  213. Slemr, F., and Seiler, W., 1984, Field measurements of NO and NO2 emissions from fertilized and unfertilized soils, J. Atmos. Chem. 2:1–24.CrossRefGoogle Scholar
  214. Slemr, F., and Seiler, W., 1991, Field study of environmental variables controlling the NO emissions from soil, and of the NO compensation points, J. Geophys. Res. 96:13017–13031.CrossRefGoogle Scholar
  215. Slemr, F., Conrad, R., and Seiler, W., 1984, Nitrous oxide emissions from fertilized and unfertilized soils in a subtropical region (Andalusia, Spain), J. Atmos. Chem. 1:159–169.CrossRefGoogle Scholar
  216. Smith, C. J., Brandon, M., and Patrick Jr., W. H., 1982, Nitrous oxide emission following urea-N fertilization of wetland rice, Soil Sci. Plant Nutr. 28:161–171.CrossRefGoogle Scholar
  217. Smith, K. D., Klasson, K. T., Ackerson, M. D., Clausen, E. C., and Gaddy, J. L., 1991, COS degradation by selected CO-utilizing bacteria, Appl. Biochem. Biotechnol. 28/29:787–796.CrossRefGoogle Scholar
  218. Smith, M. S., 1983, Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity, Appl. Environ. Microbiol. 45:1545–1547.PubMedGoogle Scholar
  219. Smith, M. S., and Zimmerman, K., 1981, Nitrous oxide production by nondenitrifying soil nitrate reducers, Soil Sci. Soc. Am. J. 45:865–871.CrossRefGoogle Scholar
  220. Steele, L. P., Dlugokencky, E. J., Lang, P. M., Tans, P. P., Martin, R. C., and Masarie, K. A., 1992, Slowing down of the global accumulation of atmospheric methane during the 1980s, Nature 358:313–316.CrossRefGoogle Scholar
  221. Steudler, P. A., and Peterson, B. J., 1984, Contribution of gaseous sulphur from salt marshes to the global sulphur cycle, Nature 311:455–457.CrossRefGoogle Scholar
  222. Steudler, P. A., and Peterson, B. J., 1985, Annual cycle of gaseous sulfur emissions from a New England Spartina alterniflora marsh, Atmos. Environ. 19:1411–1416.CrossRefGoogle Scholar
  223. Striegl, R. G., McConnaughey, T. A., Thorstenson, D. C., Weeks, E. P., and Woodward, J. C., 1992, Consumption of atmospheric methane by desert soils, Nature 357:145–147.CrossRefGoogle Scholar
  224. Teraguchi, S., and Hollocher, T. C., 1989, Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes, J. Biol. Chem. 264:1972–1979.PubMedGoogle Scholar
  225. Tiedje, J. M., 1988, Ecology of denitrification and dissimilatory nitrate reduction to ammonia, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), Wiley, New York, pp. 179–244.Google Scholar
  226. Tiedje, J. M., Sexstone, A. J., Parkin, T. B., Revsbech, N. P., and Shelton, D. R., 1984, Anaerobic processes in soil, Plant Soil 76:197–212.CrossRefGoogle Scholar
  227. Van Cleemput, O., and Baert, L., 1984, Nitrite: A key compound in N loss processes under acid conditions? Plant Soil 76:233–241.CrossRefGoogle Scholar
  228. Vecherskaya, M. S., Galchenko, V. F., Sokolova, E. N., and Samarkin, V. A., 1993, Activity and species composition of aerobic methanotrophic communities in tundra soils, Curr. Microbiol. 27:181–184.CrossRefGoogle Scholar
  229. Vedenina, I. Y., and Zavarzin, G. A., 1977, Biological removal of nitrous oxide under oxidizing conditions, Mikrobiologiya 46:898–903.Google Scholar
  230. Vedenina, I. Y., Miller, Y. M., Kapustin, O. A., and Zavarzin, G. A., 1980, Oxidation of nitrous oxide during decomposition of hydrogen peroxide by catalase, Mikrobiologiya 49:5–8.Google Scholar
  231. Warneck, P., 1988, Chemistry of the Natural Atmosphere, Academic Press, San Diego, Calif.Google Scholar
  232. Whalen, S. C., Reeburgh, W. S., and Sandbeck, K. A., 1990, Rapid methane oxidation in a landfill cover soil, Appl. Environ. Microbiol. 56:3405–3411.PubMedGoogle Scholar
  233. Whalen, S. C., Reeburgh, W. S., and Barber, V. A., 1992, Oxidation of methane in boreal forest soils—A comparison of 7 measures, Biogeochemistry 16:181–211.CrossRefGoogle Scholar
  234. Williams, E. J., Hutchinson, G. L., and Fehsenfeld, F. C., 1992, NOx and N2O emissions from soil, Global Biogeochem. Cycles 6:351–388.CrossRefGoogle Scholar
  235. Yavitt, J. B., Downey, D. M., Lang, G. E., and Sexstone, A. J., 1990, Methane consumption in two temperate forest soils, Biogeochemistry 9:39–52.CrossRefGoogle Scholar
  236. Yoshinari, T., Hynes, R., and Knowles, R., 1977, Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil, Soil Biol. Biochem. 9:177–183.CrossRefGoogle Scholar
  237. Zafiriou, O. C., Hanley, Q. S., and Snyder, G., 1989, Nitric oxide and nitrous oxide reduction and cycling during dissimilatory nitrite reduction by Pseudomonas perfectomarina, J. Biol. Chem. 264:5694–5699.PubMedGoogle Scholar
  238. Zausig, J., Stepniewski, W., and Horn, R., 1993, Oxygen concentration and redox potential gradients in unsaturated model soil aggregates, Soil Sci. Soc. Am. J. 57:908–916.CrossRefGoogle Scholar
  239. Zehnder, A. J. B., and Stumm, W., 1988, Geochemistry and biogeochemistry of anaerobic habitats, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), Wiley, New York, pp. 1–38.Google Scholar
  240. Zeikus, J. G., 1983, Metabolism of one-carbon compounds by chemotrophic anaerobes, Adv. Microb. Physiol. 24:215–299.PubMedCrossRefGoogle Scholar
  241. Zimmerman, P. R., Greenberg, J. P., Wandiga, S. O., and Crutzen, P. J., 1982, Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen, Science 218:563–565.PubMedCrossRefGoogle Scholar
  242. Zumft, W. G., 1993, The biological role of nitric oxide in bacteria, Arch. Microbiol. 160:253–264.PubMedCrossRefGoogle Scholar
  243. Zumft, W. G., and Kroneck, P. M. H., 1990, Metabolism of nitrous oxide, in: Denitrification in Soil and Sediment (N. P. Revsbech and J. Soerensen, eds.), Plenum Press, New York, pp. 37–55.Google Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • Ralf Conrad
    • 1
  1. 1.Max Planck Institut für Terrestrische MikrobiologieMarburgGermany

Personalised recommendations