Advertisement

The Microbial Logic and Environmental Significance of Reductive Dehalogenation

  • Jan Dolfing
  • Jacobus E. M. Beurskens
Part of the Advances in Microbial Ecology book series (AMIE, volume 14)

Abstract

In the last 25 years, Western society has decisively changed its attitude toward halogenated compounds. Until the end of the 1960s, “chemicals” were applied indiscriminately in a wide variety of agricultural and industrial processes. Many of these chemicals were chlorinated compounds. They were used because they had many useful characteristics. One of these characteristics was that they were very stable and rather resistant to chemical and biological degradation. With hindsight it is thus not surprising that these halogenated compounds proved to be quite persistent in the environment. Many of these generally hydrophobic compounds have the tendency to accumulate in biota to such levels that they caused considerable damage or even death. The eloquent outcry of Rachel Carson (1962) and others in the 1960s resulted in a drastic reappraisal of the wisdom of using halogenated organic compounds indiscriminately.

Keywords

Reductive Dechlorination Anoxic Environment Reductive Dehalogenation Dechlorination Rate Chlorine Substituent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsson, K., and Klick, S., 1991, Degradation of halogenated phenols in anoxic natural marine sediments, Mar. Pollut. Bull. 22:227–233.CrossRefGoogle Scholar
  2. Abrahamsson, K., Ekdahl, A., Collen, J., Fahlström, E., and Pedersen, M., 1995, The natural formation of trichloroethylene and perchloroethylene in seawater, in: Naturally-Produced Organohalogens (A. Grimvall and E. W. B. de Leer, eds.), Kluwer Academic Publishers, Netherlands, pp. 327–331.CrossRefGoogle Scholar
  3. Abramowicz, D. A., Brennan, M. J., van Dort, H. M., and Gallager, E. L., 1993, Factors influencing the rate of polychlorinated biphenyl dechlorination in Hudson River sediments, Environ. Sci. Technol. 27:1125–1131.CrossRefGoogle Scholar
  4. Adrian, N. R., and Suflita, J. M., 1990, Reductive dehalogenation of a nitrogen heterocyclic herbicide in anoxic aquifer slurries, Appl. Environ. Microbiol. 56:292–294.PubMedGoogle Scholar
  5. Adrian, N. R., and Suflita, J. M., 1994, Anaerobic biodegradation of halogenated and nonhalogenated N-, S-, and O-heterocyclic compounds in aquifer slurries, Environ. Toxicol. Chem. 13:1551–1557.Google Scholar
  6. Ahring, B. K., Christiansen, N., Mathrani, I., Hendriksen, H. V., Macario, A. J. L., and Conway de Macario, E., 1992, Introduction of a de novo bioremediation ability, aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge with Desulfomonile tiedjei, Appl. Environ. Microbiol. 58: 3677–3682.PubMedGoogle Scholar
  7. Alcock, R. E., Johnston, A. E., McGrath, S. P., Berrow, M. L., and Jones, K. C., 1993, Long-term changes in the polychlorinated biphenyl content of United Kingdom soils, Environ. Sci. Technol. 27:1918–1923.CrossRefGoogle Scholar
  8. Alder, A. C., Häggblom, M. M., Oppenheimer, S. R., and Young, L. Y., 1993, Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments, Environ. Sci. Technol. 27:530–538.CrossRefGoogle Scholar
  9. Allard, A.-S., Hynning, P.-A., Remberger, M., and Neilson, A. H., 1992, Role of sulfate concentration in dechlorination of 3,4,5-trichlorocatechol by stable enrichment cultures grown with coumarin and flavone glycones and aglycones, Appl. Environ. Microbiol. 58:961–968.PubMedGoogle Scholar
  10. Allard, A.-S., Hynning, P.-A., Remberger, M., and Neilson, A. H., 1994, Bioavailability of chlorocatechols in naturally contaminated sediment samples and of chloroguaiacols covalently bound to C2-guaiacyl residues, Appl. Environ. Microbiol. 60:777–784.PubMedGoogle Scholar
  11. Anid, P. J., Nies, L., and Vogel, T. M., 1991, Sequential anaerobic-aerobic biodegradation of PCBs in the river model, in: Proceedings: On-site Reclamation Processes for Xenobiotic Treatment and Hydrocarbon Treatment (R. E. Honchee and R. F. Olfenbuttel, eds.), Butterworth-Heinemann, Boston, pp. 428–436.Google Scholar
  12. Anonymus, 1992, Montreal protocol: Faster cuts agreed in Copenhagen, Chem. Indust. 7 December, p. 887.Google Scholar
  13. Anonymus, 1993, Facts and figures for the chemical industry, Chem. Eng. News 40–45.Google Scholar
  14. Apajalahti, J. H. A., and Sakinoja-Salonen, M. S., 1987, Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus, J. Bacteriol. 169:5125–5130.PubMedGoogle Scholar
  15. Ashworth, R. B., and Cornier, M. J., 1967, Isolation of 2,6-dibromophenol from the marine hemichordate, Balanoglossus biminiensis, Science 156:158–159.Google Scholar
  16. Assaf-Anid, N., Nies, L., and Vogel, T. M., 1992, Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12, Appl. Environ. Microbiol. 58:1057–1060.PubMedGoogle Scholar
  17. Assaf-Anid, N., Hayes, K. F., and Vogel, T. M., 1994, Reductive dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol: Mechanistic study, effect of redox potential and pH, Environ. Sci. Technol. 28:246–252.PubMedCrossRefGoogle Scholar
  18. Barber, II, L. B., 1988, Dichlorobenzene in ground water: Evidence for long-term persistence, Ground Wat. 26:696–702.CrossRefGoogle Scholar
  19. Bedard, D. L., and Van Dort, H. M., 1992, Brominated biphenyls can stimulate reductive dechlorination of endogenous Aroclor 1260 in methanogenic sediment slurries, Abstr. 92nd Gen. Mtg. Amer. Soc. Microbiol., p. 339, Q-26.Google Scholar
  20. Benedick, R. E., 1991, Ozone Diplomacy: New Directions in Safeguarding the Planet, Harvard University Press, Cambridge.Google Scholar
  21. Berry, M. J., Banu, L., and Larsen, R., 1991, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme, Nature 349:438–440.PubMedCrossRefGoogle Scholar
  22. Beurskens, J. E. M., Dekker, C. G. C., Jonkhoff, J., and Pompstra, L., 1993a, Microbial dechlorination of hexachlorobenzene in a sedimentation area of the Rhine River, Biochemistry 19: 61–81.Google Scholar
  23. Beurskens, J. E. M., Mol, G. A. J., Barreveld, H. L., van Munster, B., and Winkels, H. J., 1993b, Geochronology of priority pollutants in a sedimentation area of the Rhine River, Environ. Toxicol. Chem. 12:1549–1566.CrossRefGoogle Scholar
  24. Beurskens, J. E. M., Dekker, C. G. C., van den Heuvel, H., Swart, M., De Wolf, J., and Dolfing, J., 1994a, Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selectively mediates the thermodynamic most favorable reactions, Environ. Sci. Technol. 28: 701–706.PubMedCrossRefGoogle Scholar
  25. Beurskens, J. E. M., Winkels, H. J., de Wolf, J., and Dekker, C. G. C., 1994b, Trends of priority pollutants in the Rhine during the last 50 years, Wat. Sci. Technol. 29:77–85.Google Scholar
  26. Beurskens, J. E. M., Toussaint, M., de Wolf, J., van der Steen, J., Slot, P., Commandeur, L. C. M., and Parsons, J. R., 1995a, Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment, Environ. Toxicol. Chem. 14: 939–943.CrossRefGoogle Scholar
  27. Beurskens, J. E. M., de Wolf, J., and Dolfing, J., 1995b, Enrichment of a hexachlorobenzene dechlorinating consortium from marine sediment, submitted.Google Scholar
  28. Beurskens, J. E. M., de Wolf, J., and van den Heuvel, H., 1995c, Reductive dechlorination of some polychlorinated biphenyls by an enrichment culture from a sedimentation area of the Rhine River, submitted.Google Scholar
  29. Blasland and Bouck Engineers, 1992, Sheboygan River and harbor biodegradation pilot study work plan, internal report.Google Scholar
  30. Bopp, R. F., Simpson, H. J., Olsen, C. R., and Kostyk, N., 1981, Polychlorinated biphenyls in sediments of the tidal Hudson River, New York, Environ. Sci. Technol. 15:210–216.PubMedCrossRefGoogle Scholar
  31. Bosma, T. N. P., 1994, Simulation of Subsurface Biotransformation, Agricultural University, Wageningen, The Netherlands, Ph.D. thesis.Google Scholar
  32. Bosma, T. N. P., van der Meer, J. R., Schraa, G., Tros, M. E., and Zehnder, A. J. B., 1988, Reductive dechlorination of all trichloro-and dichlorobenzene isomers, FEMS Microbiol. Ecol. 53:223–229.CrossRefGoogle Scholar
  33. Boyd, S. A., and Shelton, D. R., 1984, Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge, Appl. Environ. Microbiol. 47:272–277.PubMedGoogle Scholar
  34. Boyd, S. A., Shelton, D. R., Berry, D., and Tiedje, J. M., 1983, Anaerobic biodegradation of phenolic compounds in digested sludge, Appl. Environ. Microbiol. 46:50–54.PubMedGoogle Scholar
  35. Braus-Stromeyer, S. A., Cook, A. M., and Leisinger, T., 1993a, Biotransformation of chloromethane to methanethiol, Environ. Sci. Technol. 27:1577–1579.CrossRefGoogle Scholar
  36. Braus-Stromeyer, S. A., Hermann, R., Cook, A. M., and Leisinger, T., 1993b, Dichlormethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethane-degrading bacterium, Appl. Environ. Microbiol. 59:3790–3797.PubMedGoogle Scholar
  37. Brown, J. F., and Wagner, R. E., 1990, PCB movement, dechlorination, and detoxification in the Acushnet Estuary, Environ. Toxicol. Chem. 9:1215–1233.CrossRefGoogle Scholar
  38. Brown, J. F., Jr., Bedard, D. L., Brennan, M. J., Carnahan, J. C., Feng, H., and Wagner, R. E., 1987a, Polychlorinated biphenyl dechlorination in aquatic sediments, Science 236:709–712.PubMedCrossRefGoogle Scholar
  39. Brown, J. F., Jr., Wagner, R. E., Feng, H., Bedard, D. L., Brennan, M. J., Carnahan, J. C., and May, R. J., 1987b, Environmental dechlorination of PCBs, Environ. Toxicol. Chem. 6:579–593.CrossRefGoogle Scholar
  40. Carson, R., 1962, Silent Spring, Fawcett Crest, New York.Google Scholar
  41. Carter, S. R., and Jewell, W. J., 1993, Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures, Water Res. 27:607–615.CrossRefGoogle Scholar
  42. Chu, K. H., and Jewell, W. J., 1994, Treatment of tetrachloroethylene with anaerobic attached film process, J. Environ. Eng. 120:58–71.CrossRefGoogle Scholar
  43. Cole, J. R., Cascarelli, A. L., Mohn, W. W., and Tiedje, J. M., 1994, Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol, Appl. Environ. Microbiol. 60:3536–3542.PubMedGoogle Scholar
  44. Cord-Ruwisch, R. H., Seitz, H.-J., and Conrad, R., 1988, The capacity of hydrogenotrophic anaerobic bacteria to complete for traces of hydrogen depends on the redox potential of the terminal electron acceptor, Arch. Microbiol. 149:350–357.CrossRefGoogle Scholar
  45. Cozza, C. L., and Woods, S. L., 1992, Reductive dechlorination pathways for substituted benzenes: A correlation with electronic properties, Biodegradation 2:265–278.CrossRefGoogle Scholar
  46. Curtis, G. P., 1991, Ph.D. thesis; cited by: Semprini, L., Hopkins, G. D., McCarty, P. L., and Roberts, P. V., 1992, In situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions, Environ. Sci. Technol. 26:2454–2461.CrossRefGoogle Scholar
  47. Davies-Venn, C., Young, J. C., and Tabak, H. H., 1992, Impact of chlorophenols and chloroanilines on the kinetics of acetoclastic methanogenesis, Environ. Sci. Technol. 26:1627–1635.CrossRefGoogle Scholar
  48. Dean, J. A., 1985, Lange’s Handbook of Chemistry, 13th ed., McGraw-Hill, New York.Google Scholar
  49. de Bruijn, J., Busser, F., Seinen, W., and Hermens, J., 1989, Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the “slow-stirring” method, Environ. Toxicol. Chem. 8:499–512.CrossRefGoogle Scholar
  50. de Bruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G., and Zehnder, A. J. B., 1992, Complete reductive transformation of tetrachloroethene to ethane, Appl. Environ. Microbiol. 58: 1996–2000.PubMedGoogle Scholar
  51. DeFlaun, M. F., Ensley, B. D., and Steffan, R. J., 1992, Biological oxidation of hydrochlorofluorocarbons (HCFCs) by a methanotrophic bacterium, Biol technology 10:1576–1578.Google Scholar
  52. De Jong, E., Field, J. A., Spinnler, H.-E., Wijnberg, J. P. B. A., and de Bont, J. A. M., 1994, Significant biogenesis of chlorinated aromatics by fungi in natural environments, Appl. Environ. Microbiol. 60:264–270.PubMedGoogle Scholar
  53. de Voogt, P., Wells, D. E., Reutergardh, L., and Brinkman, U. A. T., 1990, Biological activity, determination and occurrence of planar, mono-and di-ortho PCBs, Int. J. Environ. Anal. Chem. 40:1–46.CrossRefGoogle Scholar
  54. DeWeerd, K. A., and Suflita, J. M., 1990, Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of “Desulfomonile Tiedjei,” Appl. Environ. Microbiol. 56:2999–3005.PubMedGoogle Scholar
  55. DeWeerd, K. A., Suflita, J. M., Linkfield, T. G., Tiedje, J. M., and Pritchard, P. H., 1986, The relationship between reductive dehalogenation and other aryl substituent removal reactions catalyzed by anaerobes, FEMS Microbiol. Ecol. 38:331–339.CrossRefGoogle Scholar
  56. DeWeerd, K. A., Mandelco, L., Tanner, R. S., Woese, C. R., and Suflita, J. M., 1990, Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium, Arch. Microbiol. 154:23–30.CrossRefGoogle Scholar
  57. DiStefano, T. D., Gossett, J. M., and Zinder, S. H., 1991, Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis, Appl. Environ. Microbiol. 57:2287–2292.PubMedGoogle Scholar
  58. DiStefano, T. D., Gossett, J. M., and Zinder, S. H., 1992, Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture, Appl. Environ. Microbiol. 58:3622–3629.PubMedGoogle Scholar
  59. Dolfing, J., 1986, Granulation in UASB reactors, Water Sci. Technol. 18(12):15–25.Google Scholar
  60. Dolfing, J., 1990, Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1, Arch. Microbiol. 153:264–266.PubMedCrossRefGoogle Scholar
  61. Dolfing, J., 1992, The energetic consequences of hydrogen gradients in methanogenic ecosystems, FEMS Microbiol. Ecol. 101:183–187.Google Scholar
  62. Dolfing, J., 1995, Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s [letter to the editor], Appl. Environ. Microbiol. 61: 2450–2451.Google Scholar
  63. Dolfing, J., and Bloemen, W. G. B. M., 1985, Activity measurements as a tool to characterize the microbial composition of methanogenic environments, J. Microbiol. Meth. 4:1–12.CrossRefGoogle Scholar
  64. Dolfing, J., and Harrison, B. K., 1992, Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments, Environ. Sci. Technol. 26:2213–2218.CrossRefGoogle Scholar
  65. Dolfing, J., and Harrison, B. K., 1993, Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments, FEMS Microbiol. Ecol. 13:23–30.CrossRefGoogle Scholar
  66. Dolfing, J., and Janssen, D. B., 1994, Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds, Biodegradation 5:21–28.Google Scholar
  67. Dolfing, J., and Tiedje, J. M., 1986, Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate, FEMS Microbiol. Ecol. 38:293–298.CrossRefGoogle Scholar
  68. Dolfing, J., and Tiedje, J. M., 1991a, Influence of substituents on reductive dehalogenation of 3-chlorobenzoate analogs, Appl. Environ. Microbiol. 57:820–824.PubMedGoogle Scholar
  69. Dolfing, J., and Tiedje, J. M., 1991b, Kinetics of two complementary hydrogen sink reactions in a defined 3-chlorobenzoate degrading methanogenic co-culture, FEMS Microbiol. Ecol. 86:25–32.CrossRefGoogle Scholar
  70. Dolfing, J., and Tiedje, J. M., 1991c, Acetate as a source of reducing equivalents in the reductive dechlorination of 2,5-dichlorobenzoate, Arch. Microbiol. 156:356–361.CrossRefGoogle Scholar
  71. Dolfing, J., van den Wijngaard, A. J., and Janssen, D. B., 1993, Microbiology aspects of the removal of chlorinated hydrocarbons from air, Biodegradation 4:261–282.PubMedCrossRefGoogle Scholar
  72. Drzyzga, O., Jansen, S., and Blotevogel, K.-H., 1994, Mineralization of monofluorobenzoate by a diculture under sulfate-reducing conditions, FEMS Microbiol. Lett. 116:215–220.PubMedCrossRefGoogle Scholar
  73. Eberson, L., 1987, Electron Transfer Reactions in Organic Chemistry, Springer, Berlin.CrossRefGoogle Scholar
  74. Egli, C., Thüer, D., Cook, A. M., and Leisinger, T., 1989, Monochloro-and dichloroacetic acids as carbon and energy sources for a stable, methanogenic mixed culture, Arch. Microbiol. 152:218–223.CrossRefGoogle Scholar
  75. Eitzer, B. D., and Hites, R. A., 1989, Atmospheric transport and deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans, Environ. Sci. Technol. 23:1396–1401.CrossRefGoogle Scholar
  76. Farwell, S. O., Beland, F. A., and Geer, R. D., 1975, Reduction pathways of organohalogen compounds part 1. Chlorinated benzenes, J. Electroanal. Chem. 61:303–313.CrossRefGoogle Scholar
  77. Fathepure, B. Z., and Vogel, T. M., 1991, Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor, Appl. Environ. Microbiol. 57:3418–3422.PubMedGoogle Scholar
  78. Fathepure, B. Z., Tiedje, J. M., and Boyd, S. A., 1987, Anaerobic bacteria that dechlorinate perchloroethylene, Appl. Environ. Microbiol. 53:2671–2674.PubMedGoogle Scholar
  79. Fathepure, B. Z., Tiedje, J. M., and Boyd, S. A., 1988, Reductive dechlorination of hexa-chlorobenzene to tri-and dichlorobenzenes in anaerobic sewage sludge, Appl. Environ., Microbiol. 54:327–330.Google Scholar
  80. Fenchel, T., and Blackburn, T. H., 1979, Bacteria and Mineral Cycling, Academic Press, London.Google Scholar
  81. Flanagan, W. P., and May, R. J., 1993, Metabolite detection as evidence for naturally occurring aerobic PCB biodegradation in Hudson River sediments, Environ. Sci. Technol. 27:2207–2212.CrossRefGoogle Scholar
  82. Fliege, H., Stock, W., Alberti, J., Poppe, A., Juhnke, I., Knie, J., and Schiller, W., 1989, Environmental behaviour of polychlorinated mono-methyl-substituted diphenyl-methanes (Me-PCDMs) in comparison with polychlorinated biphenyls (PCBs). II Environmental residues and aquatic toxicity, Chemosphere 18:1367–1378.CrossRefGoogle Scholar
  83. Furukawa, K., Tomizuka, N., and Kamibayashi, A., 1983, Metabolic breakdown of Kaneclors (polychlorobiphenyls) and their products by Acinetobacter sp., Appl. Environ. Microbiol. 46:140–145.PubMedGoogle Scholar
  84. Gantzer, C. J., and Wackett, L. P., 1991, Reductive dechlorination catalyzed by bacterial transitionmetal coenzymes, Environ. Sci. Technol. 25:715–722.CrossRefGoogle Scholar
  85. Genthner, S. B. R., Price, W. A., and Pritchard, P. H., 1989, Characterization of anaerobic dechlorinating consortia derived from aquatic sediments, Appl. Environ. Microbiol. 55:1466–1471.PubMedGoogle Scholar
  86. Gillham, R. W., and O’Hannesin, S. F., 1994, Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground Wat. 32:958–967.CrossRefGoogle Scholar
  87. Gillham, R. W., O’Hannesin, S. F., and Orth, W. S., 1993, Metal enhanced abiotic degradation of halogenated aliphatics: Laboratory tests and field trials, paper presented at the 1993 HazMat Central Conference, Chicago, Illinois, March 9–11.Google Scholar
  88. Goodwin, S., Conrad, R., and Zeikus, J. G., 1988, Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems, Appl. Environ. Microbiol. 54:590–593.PubMedGoogle Scholar
  89. Goodwin, S., Giralo-Gomez, E., Mobarry, B., and Switzenbaum, M. S., 1991, Comparison of diffusion and reaction rates in anaerobic microbial aggregates, Microb. Ecol. 22:161–174.CrossRefGoogle Scholar
  90. Gossett, J. M., 1987, Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol. 21:202–208.CrossRefGoogle Scholar
  91. Götz, R., Schumacher, E., Roch, K., Specht, W., and Weeren, R. D., 1990, Chlorierte kohlenwasserstoffe (CKWs) in Hamburger hafensedimenten, Vom Wasser 75:393–415.Google Scholar
  92. Götz, R., Friesel, P., Roch, K., Papke, O., Ball, M., and Lis, A., 1993, Polychlorinated-p-dibenzodioxins (PCDDs), dibenzofurans (PCDFs), and other chlorinated compounds in the river Elbe: Results on bottom sediments and fresh sediments collected in sedimentation chambers, Chemosphere 27:105–111.CrossRefGoogle Scholar
  93. Grimvall, A., and de Leer, E. W. B., 1995, Naturally-Produced Organohalogens, Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  94. Groenewegen, P. E. J., Driessen, A. J. M., Konings, W. N., and de Bont, J. A. M., 1990, Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1, J. Bacteriol. 172:419–423.PubMedGoogle Scholar
  95. Groenewegen, P. E. J., van den Tweel, W. J. J., and de Bont, J. A. M., 1992, Anaerobic bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by the coryneform bacterium NTB-1, Appl. Microbiol. Biotechnol. 36:541–547.CrossRefGoogle Scholar
  96. Häggblom, M. M., 1992, Microbial breakdown of halogenated aromatic pesticides and related compounds, FEMS Microbiol. Rev. 103:29–72.CrossRefGoogle Scholar
  97. Häggblom, M. M., and Young, L. Y., 1990, Chlorophenol degradation coupled to sulfate reduction, Appl. Environ. Microbiol. 56:3255–3260.PubMedGoogle Scholar
  98. Häggblom, M. M., Rivera, M. D., and Young, L. Y., 1993, Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids, Appl. Environ. Microbiol. 59:1162–1167.PubMedGoogle Scholar
  99. Hale, D. D., Rogers, J. E., and Wiegel, J., 1991, Environmental factors correlated to dichlorophenol dechlorination in anoxic freshwater sediments, Environ. Toxicol. Chem. 10:1255–1265.CrossRefGoogle Scholar
  100. Harkness, M. R., McDermott, J. B., Abramowicz, D. A., Salvo, J. J., Flanagan, W. P., Stephens, M. L., Mondello, F. J., May, R. J., Lobos, J. H., Carroll, K. M., Brennan, M. J., Bracco, A. A., Fish, K. M., Warner, G. L., Wilson, P. R., Dietrich, D. K., Lin, D. T., Morgan, C. B., and Gately, W. L., 1993, In situ stimulation of aerobic PCB biodegradation in Hudson River sediments, Science 259:503–507.PubMedCrossRefGoogle Scholar
  101. Harper, D. B., 1993, Biogenesis and metabolic role of halomethanes in fungi and plants, in: Metal Ions in Biological Systems, Vol. 29 (H. Sigel and A. Sigel, eds.), Marcel Dekker, New York, pp. 346–388.Google Scholar
  102. Hendriksen, H. V., and Ahring, B. K., 1992, Metabolism and kinetics of pentachlorophenol transformation in anaerobic granular sludge, Appl. Microbiol. Biotechnol. 37:662–666.CrossRefGoogle Scholar
  103. Hendriksen, H. V., and Ahring, B. K., 1993, Anaerobic dechlorination of pentachlorophenol in fixed-film and upflow anaerobic sludge blanket reactors using different inocula, Biodegradation 3:399–408.CrossRefGoogle Scholar
  104. Hendriksen, H. V., Larsen, S., and Ahring, B. K., 1992, Influence of a supplemental carbon source on anaerobic dechlorination of pentachlorophenol in granular sludge, Appl. Environ. Microbiol. 58:365–370.PubMedGoogle Scholar
  105. Hoekstra, E. J., and de Leer, E. W. B., 1993, Natural production of chlorinated aromatic compounds in soil, in: Contaminated Soil 93 (F. Arendt, G. J. Annokkee, R. Bosman, and W. J. van den Brink, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 215–224.CrossRefGoogle Scholar
  106. Holliger, H. C., 1992, Reductive Dehalogenation by Anaerobic Bacteria, Agricultural University, Wageningen, The Netherlands, Ph.D. thesis.Google Scholar
  107. Holliger, C., Schraa, G., Stams, A. J. M., and Zehnder, A. J. B., 1992, Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene, Appl. Environ. Microbiol. 58:1636–1644.PubMedGoogle Scholar
  108. Holliger, C., Schraa, G., Stams, A. J. M., and Zehnder, A. J. B., 1993, A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth, Appl. Environ. Microbiol. 59:2991–2997.PubMedGoogle Scholar
  109. Holmes, D. A., Harrison, B. K., and Dolfing, J., 1993, Estimation of Gibbs free energies of formation for polychlorinated biphenyls, Environ. Sci. Technol. 27:725–731.CrossRefGoogle Scholar
  110. Hong, C.-S., Bush, B., Xiao, J., and Qiao, H., 1993, Toxic potential of non-ortho and mono-ortho coplanar polychlorinated biphenyls in Aroclors, seals, and humans, Arch. Environ. Contam. Toxicol. 25:118–123.PubMedCrossRefGoogle Scholar
  111. Horowitz, A., Suflita, J. M., and Tiedje, J. M., 1983, Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms, Appl. Environ. Microbiol. 45:1459–1465.PubMedGoogle Scholar
  112. Howard, P. H., 1989, Fate and Exposure Data for Organic Chemicals, Lewis Publishers, Chelsea, England.Google Scholar
  113. Jones, K. C., Sanders, G., Wild, S. R., Burnett, V., and Johnston, A. E., 1992, Evidence for a decline of PCBs and PAHs in rural vegetation and air in the United Kingdom, Nature 356:137–140.CrossRefGoogle Scholar
  114. King, G. M., 1986, Inhibition of microbial activity in marine sediments by a bromophenol from a hemichordate, Nature 323:257–259.CrossRefGoogle Scholar
  115. King, G. M., 1988, Dehalogenation in marine sediments containing natural sources of halophenols, Appl. Environ. Microbiol. 54:3079–3085.PubMedGoogle Scholar
  116. Kohring, G.-W., Zhang, X., and Wiegel, J., 1989, Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate, Appl. Environ. Microbiol. 55:2735–2737.PubMedGoogle Scholar
  117. Kriegman-King, M. R., and Reinhard, M., 1992, Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite, Environ. Sci. Technol. 26:2198–2208.CrossRefGoogle Scholar
  118. Kriegman-King, M. R., and Reinhard, M., 1994, Transformation of carbon tetrachloride by pyrite in aqueous solution, Environ. Sci. Technol. 28:692–700.PubMedCrossRefGoogle Scholar
  119. Krone, U. E., Thauer, R. K., and Hogenkamp, H. P. C., 1989a, Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids, Biochemistry 28:4908–4914.CrossRefGoogle Scholar
  120. Krone, U. E., Laufer, K., Thauer, R. K., and Hogenkamp, H. P. C., 1989b, Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C 1 hydrocarbons in methanogenic bacteria, Biochemistry 28:10061–10065.PubMedCrossRefGoogle Scholar
  121. Krone, U. E., Thauer, R. K., Hogenkamp, H. P. C., and Steinbach, K., 1991, Reductive formation of carbon monoxide from CC14 and FREONs 11, 12, and 13 catalyzed by corrinoids, Biochemistry 30:2713–2719.PubMedCrossRefGoogle Scholar
  122. Kuhn, E. P., and Suflita, J. M., 1989, Dehalogenation of pesticides by anaerobic microorganisms in soils and groundwater—a review, in: Reactions and Movements of Organic Chemicals in Soils (B. L. Sawhney and K. Brown, eds.), Special Publication 22, Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, pp. 111–180.Google Scholar
  123. Kuhn, E. P., Townsend, G. T., and Suflita, J. M., 1990, Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries, Appl. Environ. Microbiol. 56:2630–2637.PubMedGoogle Scholar
  124. Lake, J. L., Pruell, R. J., and Osterman, F. A., 1992, An examination of dechlorination processes and pathways in New Bedford Harbor sediments, Marine Environ. Res. 33:31–47.CrossRefGoogle Scholar
  125. Larsen, S., Hendriksen, H. V., and Ahring, B. K., 1991, Potential for thermophilic (50°C) anaerobic dechlorination of pentachlorophenol in different ecosystems, Appl. Environ. Microbiol. 57:2085–2090.PubMedGoogle Scholar
  126. Leisinger, T., 1983, Microorganisms and xenobiotic compounds, Experientia 39:1183–1191.PubMedCrossRefGoogle Scholar
  127. Liu, S. M., 1995, Anaerobic dechlorination of chlorinated pyridines in anoxic freshwater sediment slurries, J. Environ. Sci. Health Part A-Environ. Sci. Eng. 30:485–503.Google Scholar
  128. Lovelock, J. E., 1975, Natural halocarbons in the air and in the sea, Nature 256:193–194.PubMedCrossRefGoogle Scholar
  129. Lovley, D. R., and Woodward, J. C., 1992, Consumption of freons CFC-11 and CFC-12 by anaerobic sediments and soils, Environ. Sci. Technol. 26:925–929.CrossRefGoogle Scholar
  130. Mackay, D., and Shiu, W. Y., 1981, A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data 10:1175–1199.CrossRefGoogle Scholar
  131. Madsen, E. L., 1991, Determining in situ biodegradation, Environ. Sci. Technol. 25:1663–1673.CrossRefGoogle Scholar
  132. Madsen, T., and Aamand, J., 1991, Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture, Appl. Environ. Microbiol. 57:2453–2458.PubMedGoogle Scholar
  133. Madsen, T., and Aamand, J., 1992, Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture, Appl. Environ. Microbiol. 58:557–561.PubMedGoogle Scholar
  134. Madsen, T., and Licht, D., 1992, Isolation and characterization of an anaerobic chlorophenol-transforming bacterium, Appl. Environ. Microbiol. 58:2874–2878.PubMedGoogle Scholar
  135. Matheson, L. J., and Tratnyek, P. G., 1994, Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol. 28:2045–2053.PubMedCrossRefGoogle Scholar
  136. McCarty, P. L., Reinhard, M., and Rittmann, B. E., 1981, Trace organics in groundwater, Environ. Sci. Technol. 15:40–51.CrossRefGoogle Scholar
  137. Messmer, M., Wohlfarth, G., and Diekert, G., 1993, Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC, Arch. Microbiol. 160:383–387.CrossRefGoogle Scholar
  138. Mikeseil, M. D., and Boyd, S. A., 1986, Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms, Appl. Environ. Microbiol. 52:861–865.Google Scholar
  139. Mohn, W. W., and Kennedy, K. J., 1992, Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1, Appl. Environ. Microbiol. 58:1367–1370.PubMedGoogle Scholar
  140. Mohn, W. W., and Tiedje, J. M., 1990, Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation, Arch. Microbiol. 153:267–271.PubMedCrossRefGoogle Scholar
  141. Mohn, W. W., and Tiedje, J. M., 1991, Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei, Arch. Microbiol. 157:1–6.CrossRefGoogle Scholar
  142. Mohn, W. W., and Tiedje, J. M., 1992, Microbial reductive dechlorination, Microbiol. Rev. 56:482–507.PubMedGoogle Scholar
  143. Molina, M. J., and Rowland, F. S., 1974, Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone, Nature 249:810–812.CrossRefGoogle Scholar
  144. Morris, P. J., Quensen, J. F., Tiedje, J. M., and Boyd, S.A., 1992, Reductive debromination of the commercial polybrominated biphenyl mixture firemaster BP6 by anaerobic microorganisms from sediments, Appl. Environ. Microbiol. 58:3249–3256.PubMedGoogle Scholar
  145. Morris, P. J., Quensen, III, J. F., Tiedje, J. M., and Boyd, S. A., 1993, An assessment of the reductive debromination of polybrominated biphenyls in the Pine River Reservoir, Environ. Sci. Technol. 27:1580–1586.CrossRefGoogle Scholar
  146. Nayler, O., Insali, R., and Kay, R. R., 1992, Differentiation-inducing-factor dechlorinase, a novel cytosolic dechlorinating enzyme from Dictyostelium discoideum, Eur. J. Biochem. 208:531–536.PubMedCrossRefGoogle Scholar
  147. Nicholson, D. K., Woods, S. L., Istok, J. D., and Peek, D. C., 1992, Reductive dechlorination of chlorophenols by a pentachlorophenol-acclimated methanogenic consortium, Appl. Environ. Microbiol. 58:2280–2286.PubMedGoogle Scholar
  148. Neidelman, S. L., and Geigert, J., 1986, Biohalogenation: Principles, Basic Roles and Applications, Ellis Horwood, Chichester, England.Google Scholar
  149. Nies, L. F., 1993, Microbial and Chemical Reductive Dechlorination of Polychlorinated Biphenyls and Chlorinated Benzenes, The University of Michigan, Ann Arbor, Ph.D. thesis.Google Scholar
  150. Nies, L. F., and Vogel, T. M., 1991, Identification of the proton source for the microbial reductive dechlorination of 2,3,4,5,6-pentachlorobiphenyl, Appl. Environ. Microbiol. 57:2771–2774.PubMedGoogle Scholar
  151. Nishino, S. F., and Spain, J. C., 1993, Cell-density dependent adaptation of Pseudomonas putida to biodegradation of p-nitrophenol, Environ. Sci. Technol. 27:489–494.CrossRefGoogle Scholar
  152. Öberg, L. G., Andersson, R., Wågman, N., and Rappe, C., 1993, Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chloroorganic precursors in activated sewage sludge and garden compost, paper presented at the International Conference on Naturally Produced Organohalogens, 19–24 September, Delft, The Netherlands.Google Scholar
  153. Oliver, B. G., and Nicol, K. D., 1982, Chlorobenzenes in sediments, water, and selected fish from lakes Superior, Huron, Erie, and Ontario, Environ. Sci. Technol. 16:532–536.CrossRefGoogle Scholar
  154. Oliver, B. G., and Niimi, A. J., 1988, Tropodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in Lake Ontario ecosystem, Environ. Sci. Technol. 22:388–397.CrossRefGoogle Scholar
  155. Oremland, R. S., Miller, L. G., and Strohmaier, F. E., 1994, Degradation of methyl bromide in anaerobic sediments, Environ. Sci. Technol. 28:514–520.PubMedCrossRefGoogle Scholar
  156. Parsons, J. R., Opperhuizen, A., and Hutzinger, O., 1987, Influence of membrane permeation on biodegradation kinetics of hydrophobic compounds, Chemosphere 16:1361–1370.CrossRefGoogle Scholar
  157. Pearson, C. R., 1982, C1 and C2 halocarbons, in: The Handbook of Environmental Chemistry, Vol. 3B (O. Hutzinger, ed.), Springer-Verlag, Berlin, pp. 69–88.Google Scholar
  158. Peijnenburg, W. J. G. M., ’t Hart, M. J., den Hollander, H. A., van de Meent, D., Verboom, H. H., and Wolfe, N. L., 1991, QSARs for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems, Sci. Total Environ. 109/110:283–300.CrossRefGoogle Scholar
  159. Peijnenburg, W. J. G. M., ’t Hart, M. J., den Hollander, H. A., van de Meent, D., Verboom, H. H., and Wolfe, N. L., 1992a, Reductive transformations of halogenated aromatic hydrocarbons in anaerobic water-sediment systems: Kinetics, mechanisms and products, Environ. Toxicol. Chem. 11:289–300.CrossRefGoogle Scholar
  160. Peijnenburg, W. J. G. M., ’t Hart, M. J., den Hollander, H. A., van de Meent, D., Verboom, H. H., and Wolfe, N. L., 1992b, QSARs for predicting reductive transformation rate constants of halogenated aromatic hydrocarbons in anoxic sediment systems, Environ. Toxicol. Chem. 11:301–314.CrossRefGoogle Scholar
  161. Petty, M. A., 1961, An introduction to the origin and biochemistry of microbial halometabolites, Bacteriol. Rev. 25:111–160.PubMedGoogle Scholar
  162. Picardal, F. W., Arnold, R. G., Cough, H., Little, A. M., and Smith, M. E., 1993, Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200, Appl. Environ. Microbiol. 59:3763–3770.PubMedGoogle Scholar
  163. Pries, F., van der Ploeg, J. R., Dolfing, J., and Janssen, D. B., 1994, Degradation of halogenated aliphatic compounds: The role of adaptation, FEMS Microbiol. Rev. 15:279–295.PubMedCrossRefGoogle Scholar
  164. Quensen, III, J. F., Tiedje, J. M., and Boyd, S. A., 1988, Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments, Science 242:752–754.PubMedCrossRefGoogle Scholar
  165. Quensen, III, J. F., Boyd, S. A., and Tiedje, J. M., 1990, Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments, Appl. Environ. Microbiol. 56:2360–2369.PubMedGoogle Scholar
  166. Ramanand, K., Balba, M. T., and Duffy, J., 1993a, Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions, Appl. Environ. Microbiol. 59:3266–3272.PubMedGoogle Scholar
  167. Ramanand, K., Nagarajan, A., and Suflita, J. M., 1993b, Reductive dechlorination of the nitrogen heterocyclic herbicide picloram, Appl. Environ. Microbiol. 59:2251–2256.PubMedGoogle Scholar
  168. Rapaport, R. A., and Eisenreich, S. J., 1988, Historical atmospheric inputs of high molecular weight chlorinated hydrocarbons to eastern North America, Environ. Sci. Technol. 22:931–941.PubMedCrossRefGoogle Scholar
  169. Renard, P., Bouillon, C., Naveau, H., and Nyns, E.-J., 1993, Toxicity of a mixture of polychlorinated organic compounds towards an unacclimated methanogenic consortium, Biotechnol. Lett. 15:195–200.CrossRefGoogle Scholar
  170. Rhee, G.-Y., Sokol, R. C., Bush, B., and Bethoney, C. M., 1993a, Long-term study of anaerobic dechlorination of Aroclor 1254 with and without biphenyl enrichment, Environ. Sci. Technol 27:714–719.CrossRefGoogle Scholar
  171. Rhee, G.-Y., Bush, Bethoney, C. M., DeNucci, A., Oh, H.-M., and Sokol, R. C., 1993b, Reductive dechlorination of Aroclor 1242 in anaerobic sediments: Pattern, rate and concentration dependence, Environ. Toxicol. Chem. 12:1025–1032.CrossRefGoogle Scholar
  172. Rhee, G.-Y., Sokol, R. C., Bethoney, C. M., and Bush, B., 1993c, Dechlorination of polychlorinated biphenyls by Hudson river sediment organisms: Specificity to the chlorination pattern of congeners, Environ. Sci. Technol. 27:1190–1192.CrossRefGoogle Scholar
  173. Roberts, A. L., Sanborn, P. N., and Gschwend, P. M., 1992, Nucleophilic substitution reactions of dihalomethanes with hydrogen sulfide species, Environ. Sci. Technol. 26:2263–2274.CrossRefGoogle Scholar
  174. Safe, S., 1990, Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs), Crit. Rev. Toxicol. 21:51–88.PubMedCrossRefGoogle Scholar
  175. Schanke, C. A., and Wackett, L. P., 1992, Environmental reductive elimination reactions of polychlorinated ethanes mimicked by transition-metal coenzymes, Environ. Sci. Technol. 26:830–833.CrossRefGoogle Scholar
  176. Scholz-Muramatsu, H., Neumann, A., Meßmer, M., Moore, E., and Diekert, G., 1995, Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strict anaerobic bacterium, Arch. Microbiol. 163:48–56.CrossRefGoogle Scholar
  177. Schrauzer, G. N., 1968, Organocobalt chemistry of vitamin B12 model compounds (cobaloximes), Acc. Chem. Res. 1:97–103.CrossRefGoogle Scholar
  178. Schwarzenbach, R. P., and Westall, J., 1981, Transport of nonpolar organic compounds from surface water to groundwater. Laboratory studies, Environ. Sci. Technol 15:1360–1367.CrossRefGoogle Scholar
  179. Schwarzenbach, R. P., Molnar-Kubica, E., Giger, W., and Wakeham, S. G., 1979, Distribution, residence time, and fluxes of tetrachloroethylene and 1,4-dichlorobenzene in Lake Zürich, Switzerland, Environ. Sci. Technol. 13:1367–1373.CrossRefGoogle Scholar
  180. Schwarzenbach, R. P., Giger, W., Hoehn, E., and Schneider, J. K., 1983, Behavior of organic compounds during infiltration of river water to groundwater. Field studies, Environ. Sci. Technol. 17:472–479.PubMedCrossRefGoogle Scholar
  181. Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M., 1993, Environmental Organic Chemistry, John Wiley & Sons, New York.Google Scholar
  182. Semprini, L., Hopkins, G. D., Roberts, P. V., and McCarty, P. L., 1991, In situ biotransformation of carbon tetrachloride, Freon-113, Freon-11 and 1,1,1-TCA under anoxic conditions, in: On-Site Bioreclamation Processes for Xenobiotic and Hydrocarbon Treatment (R. E. Hinchee, and R. F. Olfenbuttel, eds.), U.S.A. Reed Publishers, Newton, MA, pp. 41–58.Google Scholar
  183. Sheikh, Y. M., and Djerassi, C., 1975, 2,6-Dibromophenol and 2,4,6-tribromophenols—antiseptic secondary metabolites of Phoronopsis viridis, Experientia 31:265–266.PubMedCrossRefGoogle Scholar
  184. Shelton, D. R., and Tiedje, J. M., 1984, Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid, Appl. Environ. Microbiol. 48:840–848.PubMedGoogle Scholar
  185. Shiu, W. Y., Doucette, W., Gobas, F. A. P. C., Andren, A., and Mackay, D., 1988, Physical-chemical properties of chlorinated dibenzo-p-dioxins, Environ. Sci. Technol. 22:651–658.CrossRefGoogle Scholar
  186. Sierra-Alvarez, R., and Lettinga, G., 1991, The effect of structure on the inhibition of acetoclastic methanogenesis in granular sludge, Appl. Environ. Microbiol. 34:544–550.Google Scholar
  187. Smith, M. H., and Woods, S. L., 1994, Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s, Appl. Environ. Microbiol. 60:4111–4115.PubMedGoogle Scholar
  188. Sonier, D. N., Duran, N. L., and Smith, G. B., 1994, Dechlorination of trichlorofluoromethane (CFC-11) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic compounds, Appl. Environ. Microbiol. 60:4567–4572.PubMedGoogle Scholar
  189. Steiert, J. G., and Crawford, R. L., 1986, Catabolism of pentachlorophenol by a Flavobacterium sp., Biochem. Biophys. Res. Commun. 141:825–830.PubMedCrossRefGoogle Scholar
  190. Stockdale, M., and Selwyn, M. J., 1971a, Influence of ring substituents on the action of phenols on some dehydrogenases, phosphokinases and the soluble ATPase from mitochondria, Eur. J. Biochem. 21:416–423.PubMedCrossRefGoogle Scholar
  191. Stockdale, M., and Selwyn, M. J., 1971b, Influence of ring substituents on the activity of phenols as inhibitors and uncouplers of mitochondrial respiration, Eur. J. Biochem. 21:565–574.PubMedCrossRefGoogle Scholar
  192. Stumm, W., and Morgan, J. J., 1981, Aquatic Chemistry, 2nd ed. Wiley-Interscience, New York.Google Scholar
  193. Sturm, R., and Gandrass, J., 1988, Verhalten von schwerflüchtigen chlorkohlenwasserstoffen an schwebstoffen des Elbe-ästuars, Vom Wasser 70:265–280.Google Scholar
  194. Suflita, J. M., Horowitz, A., Shelton, D. R., and Tiedje, J. M., 1982, Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds, Science 218:1115–1117.PubMedCrossRefGoogle Scholar
  195. Symonds, R. B., Rose, W. I., and Reed, M. H., 1988, Contribution of Cl-and F bearing gases to the atmosphere by volcanoes, Nature 334:415–417.CrossRefGoogle Scholar
  196. Tanabe, S., 1988, PCB problems in the future: Foresight from current knowledge, Environ. Poll. 50:5–28.CrossRefGoogle Scholar
  197. Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  198. Thayer, J. S., 1990, React metals, organic halides, and—water!?! Chemtech 20:188–191.Google Scholar
  199. Thayer, J. S., Olson, G. J., and Brinckman, F. E., 1984, Iodomethane as a potential metal mobilizing agent in nature, Environ. Sci. Technol. 18:726–729.CrossRefGoogle Scholar
  200. Thayer, J. S., Olson, G. J., and Brinckman, F. E., 1987, A novel flow process for metal and ore solubilization by aqueous methyl iodide, Appl. Organometal. Chem. 1:73–79.CrossRefGoogle Scholar
  201. Tiedje, J. M., Boyd, S. A., and Fathepure, B. Z., 1987, Anaerobic degradation of chlorinated aromatic hydrocarbons, Dev. Ind. Microbiol. 27:117–127.Google Scholar
  202. Traunecker, J., Preuss, A., and Diekert, G., 1991, Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium, Arch. Microbiol. 15:416–421.CrossRefGoogle Scholar
  203. Utkin, I., Woese, C., and Wiegel, J., 1994, Isolation and characterization of Desulfitobacter dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds, Int. J. Syst. Bact. 44:612–619.CrossRefGoogle Scholar
  204. Utkin, I., Dalton, D. D., and Wiegel, J., 1995, Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC-1, Appl. Environ. Microbiol. 61:346–351.PubMedGoogle Scholar
  205. van den Tweel, W. J. J., Kok, J. B., and de Bont, J. A. M., 1987, Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iododbenzoate by Alcaligenes denitrificans NTB-1, Appl. Environ. Microbiol. 53:810–815.PubMedGoogle Scholar
  206. van den Wijngaard, A. J., van der Kamp, K. W. H. J., van der Ploeg, J., Kazemier, B., Pries, F., and Janssen, D. B., 1992, Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs, Appl. Environ. Microbiol. 58:976–983.PubMedGoogle Scholar
  207. van der Meer, J. R., de Vos, W. M., Harayama, S., and Zehnder, A. J. B., 1992, Molecular mechanisms of genetic adaptation to xenobiotic compounds, Microbiol. Rev. 56:677–694.PubMedGoogle Scholar
  208. VanDort, H. M., and Bedard, D. L., 1991, Reductive ortho and meta dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms, Appl. Environ. Microbiol. 57:1576–1578.Google Scholar
  209. Vannelli, T, and Hooper, A. B., 1993, Reductive dehalogenation of the trichloromethyl group of nitrapyrin by the ammonia-oxidizing bacterium Nitrosomonas europaea, Appl. Environ. Microbiol. 59:3597–3601.PubMedGoogle Scholar
  210. van Zoest, R., and van Eck, G. T. M., 1991, Occurrence and behaviour of several groups of organic micropollutants in the Scheldt estuary, Sci. Total Environ. 103:57–71.CrossRefGoogle Scholar
  211. Vogel, T. M., Criddle, C. S., and McCarty, P. L., 1987, Transformations of halogenated aliphatic compounds, Environ. Sci. Technol. 21:722–736.PubMedCrossRefGoogle Scholar
  212. Vogels, G. D., Keltjens, J. T., and van der Drift, C., 1988, Biochemistry of methane production, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), John Wiley & Sons, New York, pp. 707–770.Google Scholar
  213. Wiegel, J., Kohring, G.-W., Zhang, X., Utkin, I., Dalton, D., He, Z., Wu, Q., and Bedard, D., 1992, Temperature an important factor in the anaerobic transformation and degradation of chlorophenols and PCBs, in: Soil Decontamination Using Biological Processes, DECHEMA, Germany, pp. 101–108.Google Scholar
  214. Williams, W. A., 1994, Microbial reductive dechlorination of trichlorobiphenyls in anaerobic sediment slurries, Environ. Sci. Technol. 28:630–635.PubMedCrossRefGoogle Scholar
  215. Winkels, H. J., Vink, J. P. M., Beurskens, J. E. M., and Kroonenberg, S. B., 1993, Distribution and geochronology of priority pollutants in a large sedimentation area, River Rhine, The Netherlands, Appl. Geochem. (Supp) 2:95–101.CrossRefGoogle Scholar
  216. Woods, S. L., and Smith, M. H., 1995, Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s [letter to the editor], Appl. Environ. Microbiol. 61: 2450–2451.Google Scholar
  217. Xun, L., Topp, E., and Orser, C. Y., 1992, Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp., J. Bacteriol. 174:8003–8007.PubMedGoogle Scholar
  218. Zehnder, A. J. B., and Stumm, W., 1988, Geochemistry and biogeochemistry of anaerobic habitats, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), John Wiley & Sons, New York, pp. 1–38.Google Scholar
  219. Zhang, X., and Wiegel, J., 1990, Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments, Appl. Environ. Microbiol. 56:1119–1127.PubMedGoogle Scholar
  220. Zitomer, D. H., and Speece, R. E., 1993, Sequential environments for enhanced biotransformation of aqueous contaminants, Environ. Sci. Technol. 27:227–244.CrossRefGoogle Scholar
  221. Zoeteman, B. C. J., Harmsen, K., Linders, J. B. H. J., Morra, C. F. H., and Slooff, W., 1980, Persistent organic pollutants in river water and ground water of The Netherlands, Chemosphere 9:231–249.CrossRefGoogle Scholar
  222. Zwolsman, G. J., Sonneveldt, H. L. A., and Ruijgh, E. F. W., 1993, Onderzoek Noordelijk Deltabekken, Zuidrand. Toepassing accumulatiemodel waterbodem Hollands Diep, on-zekerheidsanalyse en calibratie. Delft Hydraulics Report No. T 262 (in Dutch).Google Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • Jan Dolfing
    • 1
  • Jacobus E. M. Beurskens
    • 2
  1. 1.DLO-Research Institute for Agrobiology and Soil Fertility (AB-DLO)HarenThe Netherlands
  2. 2.National Institute of Public Health and Environmental Protection (RIVM)BilthovenThe Netherlands

Personalised recommendations