Interaction between Arbuscular Mycorrhizal Fungi and Plants

Their Importance in Sustainable Agriculture in Arid and Semiarid Tropics
  • D. J. Bagyaraj
  • Ajit Varma
Part of the Advances in Microbial Ecology book series (AMIE, volume 14)


Sustainability refers to productive performance of a system over time. It implies use of natural resources to meet the present needs without jeopardizing the future potential. The concept has an undefined time dimension. The magnitude of the time dimension depends on one’s objectives, being shorter for economic factors and longer for concerns pertaining to environment, soil productivity, and land degradation. The shorter time dimension is generally less than a decade, while the longer time span may be up to five decades or more. The time dimension is also clearly addressed in the definition of sustainability adopted by the Technical Advisory Committee of the Consultative Group of International Agricultural Research: “Successful management of resources for agriculture to satisfy changing human needs while maintaining or enhancing the quality of the environment and conserving natural resources” (TAC, 1989).


Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Root Colonization Arbuscular Mycorrhiza Mycorrhizal Colonization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, L. K., and Robson, A. D., 1981, Infectivity and effectiveness of vesicular arbuscular mycorrhizal fungi: Effect of inoculum type, Aust. J. Agric. Res. 32:631–639.CrossRefGoogle Scholar
  2. Abbott, L. K., and Robson, A. D., 1982, The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation, Aust. J. Agric. Res. 33:389–408.CrossRefGoogle Scholar
  3. Allen, M. J., 1992, Mycorrhizal Functioning. An Integrative Plant-Fungal Process, Chapman and Hall, New York.Google Scholar
  4. Atkinson, D., 1992, Tree root development: The role of models in understanding the consequences of arbuscular endomycorrhizal infection, Agronomie 12:817–820.CrossRefGoogle Scholar
  5. Auge, R. M., Schekel, K. A., and Wample, R. L., 1987a, Rose leaf elasticity changes in response to mycorrhizal colonization and drought acclimation, Physiol. Plant 70:175–182.CrossRefGoogle Scholar
  6. Auge, R. M., Schekel, K. A., and Wample, R. L., 1987b, Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress, Plant Soil 99:291–302.CrossRefGoogle Scholar
  7. Bagyaraj, D. J., 1984, Biological interactions with VA mycorrhizal fungi, in: VA Mycorrhiza (C. L. Powell and D. J. Bagyaraj, eds.), CRC Press, Boca Raton, Fl., pp. 131–153.Google Scholar
  8. Bagyaraj, D. J., 1990, Ecology of VA mycorrhizae, in: Handbook of Applied Mycology, Vol. 1 (D. K. Arora, Bharat Rai, K. G. Mukerji, and G. R. Knudsen, eds.), Marcel Dekker New York, pp. 3–34.Google Scholar
  9. Bagyaraj, D. J., 1992, Mycorrhiza: Application in agriculture, in: Methods in Microbiology, Vol. 24 (J. R. Norris, D. J. Read and A. K. Varma, eds.), Academic Press, London, pp. 359–374.Google Scholar
  10. Bagyaraj, D. J., Reddy, M. S. B., and Nalini, P. A., 1989, Selection of an efficient inoculant VA mycorrhizal fungus for Leucaena, Forest Ecol. Manag. 27:81–85.CrossRefGoogle Scholar
  11. Balakrishna Reddy, and Bagyaraj, D. J., 1994, Selection of efficient VA mycorrhizal fungi for inoculating mango rootstock “Nekkare,” Scientia Hort. 59:69–73.CrossRefGoogle Scholar
  12. Becard, G., and Piche, Y., 1992, Establishment of vesicular-arbuscular mycorrhiza in root organ culture: Review and proposed methodology, in: Methods in Microbiology, Vol. 24 (J. R. Norris, D. J. Read and A. K. Varma, ed.), Academic Press, London, pp. 89–108.Google Scholar
  13. Bethlenfalvay, G. J., 1992, Mycorrhizae and crop productivity, in: Mycorrhizae in Sustainable Agriculture (G. J. Bethlenfalvay and R. G. Linderman, eds.), ASA Special Publication No. 54, American Society of Agronomy, Madison, Wisconsin, pp. 1–27.Google Scholar
  14. Bethlenfalvay, G. J., and Linderman, G. J., eds., 1992, Mycorrhizae in Sustainable Agriculture, ASA Special Publication No. 54, American Society of Agronomy, Madison, Wisconsin.Google Scholar
  15. Black, R., 1980, The role of mycorrhizal symbiosis in the nutrition of tropical plants, in: Tropical Mycorrhiza Research (P. Mikola, ed.), Clarendon Press, Oxford, England, pp. 191–202.Google Scholar
  16. Black, R., and Tinker, P. B., 1979, The development of endomycorrhizal root systems. II. Effect of agronomic factors and soil conditions on the development of vesicular arbuscular mycorrhizal infection in barley and on the endophyte spore density, New Phytol. 83:401–413.CrossRefGoogle Scholar
  17. Chatel, D. L., Greenwood, R. M., and Parker, C. A., 1968, Saprophytic competence as an important character in the selection of Rhizobium for inoculation, Proc. 9th Int. Congr. Soil Sci. Trans. 11:65–73.Google Scholar
  18. Crush, J. R., and Pattison, A. C., 1975, Preliminary results on the production of vesicular arbuscular mycorrhizal inoculum by freeze drying, in: Endomycorrhizas (F. E. Sanders, B. Mosse, and P. B. Tinker, eds.), Academic Press, London, pp. 485–493.Google Scholar
  19. Daft, M. J., and El-Giahmi, A. A., 1978, Effect of arbuscular mycorrhiza on plant growth. VIII. Effect of defoliation and light on selected hosts, New Phytol. 80:365–372.CrossRefGoogle Scholar
  20. Daniels, B. A., and Trappe, J. M., 1980, Factors affecting spore germination of the vesicular arbuscular mycorrhizal fungus, Glomus epigaeus, Mycologia 72:457–471.CrossRefGoogle Scholar
  21. Dehne, H. W., and Backhaus, G. F., 1986, The use of vesicular arbuscular mycorrhizal fungi in plant production. I. Inoculum production, Z. Pflanzenkr. Pflanzenschutz. 93:415–424.Google Scholar
  22. Evans, D. G., and Miller, M. H., 1990, The soil of the external hyphae mycelial network in the effect of soil disturbance-induced upon vesicular-arbuscular mycorrhizal colonization of young maize, New Phytol. 114:65–71.CrossRefGoogle Scholar
  23. Ferguson, J. J. and Woodhead, S. H., 1982, Production of endomycorrhizal inoculum, in: Methods and Principles of Mycorrhizal Research (N. C. Schenck, ed.), American Phytopathological Society, St. Paul, Minn., pp. 47–54.Google Scholar
  24. Fitter, A. H., 1988, Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal colonization of phosphorus supply before and during drought. J. Exp. Bot. 39:595–603.CrossRefGoogle Scholar
  25. Fitter, A. H., 1991, Costs and benefits of mycorrhizas: Implications for functioning under natural conditions, Experientia 47:350–354.CrossRefGoogle Scholar
  26. Fortuna, P., Citernesi, S., Morini, S., Giovannetti, M., and Loreti, F., 1992, Infectivity and effectiveness of different species of arbuscular mycorrhizal fungi in micropropagated plants of Mr S 2/5 plum rootstock, Agronomie 12:825–830.CrossRefGoogle Scholar
  27. Furlan, V., and Fortin, J. A., 1977, Effect of light intensity on the formation of vesicular-arbuscular endomycorrhizas on Allium cepa by Gigaspora calospora, New Phytol. 79:335–340.CrossRefGoogle Scholar
  28. Garbaye, J., 1991, Biological interactions in the mycorrhizosphere, Experientia 47:370–375.CrossRefGoogle Scholar
  29. Gerdemann, J. W., 1968, Vesicular arbuscular mycorrhiza plant growth, Annu. Rev. Phytopathol. 6:397–418.CrossRefGoogle Scholar
  30. Gerdemann, J. W., 1975, Vesicular arbuscular mycorrhizae, in: The Development and Function of Roots (J. G. Torrey and D. T. Clarkson, eds.), Academic Press, London, pp. 576–591.Google Scholar
  31. Gerdemann, J. W., and Nicolson, T. H., 1963, Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting, Trans. Br. Mycol. Soc. 46:235–244.CrossRefGoogle Scholar
  32. Govinda Rao, Y. S., Bagyaraj, D. J., and Rai, P. V., 1983, Selection of efficient VA mycorrhizal fungus for finger millet. 2. Screening under field conditions, Zentralbl. Mikrobiol. 138:413–419.Google Scholar
  33. Harinikumar, K. H., and Bagyaraj, D. J., 1988, The effect of season on VA mycorrhiza of leucaena and mango in a semi-arid tropic, Arid Soil Res. Rehabil. 2:139–143.Google Scholar
  34. Harinikumar, K. H., Bagyaraj, D. J., and Secilia, J., 1992, Survival of Glomus fasciculatum inocula at three storage temperatures, J. Soil Biol. Ecol. 12:30–34.Google Scholar
  35. Harley, J. L., 1989, The significance of mycorrhiza, Mycol. Res. 92:92–129.CrossRefGoogle Scholar
  36. Harley, J. L., 1994, Introduction: The state of the art, in: Techniques for Mycorrhizal Research (J. R. Norris, D. J. Read, A. K. Varma, eds.), Academic Press, London, pp. 1–24.Google Scholar
  37. Hayman, D. S., 1983, The physiology of vesicular arbuscular endomycorrhizal symbiosis, Can. J. Bot. 61:944–963.CrossRefGoogle Scholar
  38. Iqbal, S. H., and Qureshi, K. S., 1976, The influence of mixed sowing (cereals and crucifers) and crop rotation on the development of mycorrhiza and subsequent growth of crops under field conditions, Biologia 22:287–291.Google Scholar
  39. Jarstfer, A. G., and Sylvia, D. M., 1995, Aeroponic culture, in: Mycorrhizae: Structure, Function, Molecular Biology and Biotechnology (A. Varma and B. Hock, eds.), Springer-Verlag, Germany, pp. 427–442.Google Scholar
  40. Jasper, D. A., Abbott, L. K., and Robson, A. D., 1989a, Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi, New Phytol. 112:93–99.CrossRefGoogle Scholar
  41. Jasper, D. A., Abbot, L. K., and Robson, A. D., 1989b, Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed, New Phytol. 112:101–107.CrossRefGoogle Scholar
  42. Johnson, N. C., and Pfleger, F. L., 1992, Vesicular-arbuscular mycorrhizae and cultural stresses, in: Mycorrhizae in Sustainable Agriculture (G. J. Bethlenfalvay and R. G. Linderman (eds.), ASA Special Publication, No. 54, American Society of Agronomy, Madison, Wisconsin, pp. 71–99.Google Scholar
  43. Kendrick, B., and Berch, S., 1985, Mycorrhizae: Applications in agriculture and forestry, in: Comprehensive Biotechnology, Vol. 4 (C. W. Robinson, ed.), Pergamon Press, Oxford, England, pp. 109–150.Google Scholar
  44. Khan, A. G., 1974, The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes and of Endogone spores in adjacent soils, J. Gen. Microbiol. 81:7–14.Google Scholar
  45. Koske, R. E., 1982, Evidence for a volatile attractant from plant roots affecting germ tubes of a VA fungus, Trans. Br. Mycol. Soc. 79:305–310.CrossRefGoogle Scholar
  46. Koske, R. E., and Polson, W. R., 1984, Are VA mycorrhizae required for sand dune stabilization? Bioscience 34:420–424.CrossRefGoogle Scholar
  47. Kothari, S. K., Marschner, H., and George, E., 1990, Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize, New Phytol. 116:303–311.CrossRefGoogle Scholar
  48. Krishna, K. R., Shetty, K. G., Dart, P. J., and Andrews, D. J., 1985, Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet, Plant Soil 86:113–135.CrossRefGoogle Scholar
  49. Kruckelmann, H. W., 1975, Effects of fertilizers, soils, soil tillage and plant species on the frequency of Endogone chlamydospores and mycorrhizal infection in arable soils, in: Endomycorrhizas (F. E. Sanders, B. Mosse, and P. B. Tinker, eds.), Academic Press, London, pp. 511–525.Google Scholar
  50. Lapeyrie, F. F., and Chilvers, G. A., 1985, An endomycorrhiza-ectomycorrhiza succession cited with enhanced growth of Eucalyptus dumosa seedlings planted in calcareous soil, New Phytol. 100:93–104.CrossRefGoogle Scholar
  51. Linderman, R. G., 1988, Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect, Phytopathology 78:366–371.Google Scholar
  52. Linderman, R. G., 1992, Vesicular-arbuscular mycorrhizae and soil microbial interactions, in: Mycorrhizae in Sustainable Agriculture (G. J. Bethlenfalvay, and R. G. Linderman, eds.), ASA Special Publication No. 54, American Society of Agronomy, Madison, Wisconsin, pp. 45–70.Google Scholar
  53. Loree, M. A. J., and Williams, S. E., 1984, Vesicular-arbuscular mycorrhizae and severe land disturbance, in: VA Mycorrhizae and Reclaimation of Arid and Semi-arid Lands (S. E. Williams and M. F. Allen, eds.), University of Wyoming Publications, Laramie, Wyoming, pp. 1–14.Google Scholar
  54. Mallesha, B. C., and Bagyaraj, D. J., 1990, Reduction of leucaena to single inoculation versus dual inoculation with Glomus mosseae and/or Gigaspora margarita, Leucaena Res. Rep. 11: 56–57.Google Scholar
  55. Marx, D. H., Ruehle, J. L., and Cordeil, C.E., 1994, Methods for studying nursery and field responses of trees to specific ectomycorrhizas, in: Mycological Research (J. R. Norris, D. J. Read, and A. K. Varma, eds.), Academic Press, London, pp. 383–412.Google Scholar
  56. Mason, P. A., Last, T. F., Pelham, J., and Ingleby, K., 1982, Ecology of some fungi associated with an ageing stand of birches (Betula pendula and B. pubescens), Forest Ecol. Manag. 4:19–39.CrossRefGoogle Scholar
  57. Mathew, J., Shankar, A., Neeraj, Varma A., 1991, Glomaceous fungi associated with cacti, a fodder supplement in deserts. Trans. Soc. Japan 32:225–233.Google Scholar
  58. Mercy, M. A., Shivashankar, G., and Bagyaraj, D. J., 1990, Mycorrhizal colonization in cowpea is host dependent and heritable, Plant Soil 121:292–294.CrossRefGoogle Scholar
  59. Mikola, P., 1980, Tropical Mycorrhizal Research, Clarendon Press, Oxford, England.Google Scholar
  60. Mondal, N., and Varma, A., 1994, Mycorrhizosphere: Impact in sustaining soil fertility, in: Perspectives in Life Science (M. L. Naik, ed.), in press.Google Scholar
  61. Morton, J. B., Franke, S. P., and Bentivenga, S. P., 1995, Systematic developmental foundations for morphological diversity among endomycorrhizal fungi in Glomales (Zygomycetes), in: Mycorrhizae: Structure, Function, Molecular biology and Biotechnology (A. Varma and B. Hock, eds.), Springer-Verlag, Germany, pp. 669–684.Google Scholar
  62. Mosse, B., 1973, The role of mycorrhiza in phosphorus solubilization, in: Proceedings of the 4th International Conference on Global Impacts of Applied Microbiology, (J. S. Furtado, ed.), Sau Paulo, Brazil, pp. 543–561.Google Scholar
  63. Mosse, B., Stribley, D. P., and Le Tacon, F., 1981, Ecology of mycorrhizae and mycorrhizal fungi, Adv. Microbiol. Ecol. 5:137–210.Google Scholar
  64. Mosse, B., Warner, A., and Clarke, C. A., 1982, Plant growth response to vesicular arbuscular mycorrhiza. XIII. Spread of an introduced VA endophyte in the field and residual growth effects of inoculation in the second year. New Phytol. 90:521–528.CrossRefGoogle Scholar
  65. Munns, D. N., and Mosse, B., 1980, Mineral nutrition of legume corps, in: Advances in Legume Science (R. J. Summerfield, and A. H. Bunting, eds.), University of Reading Press, England, pp. 115–125.Google Scholar
  66. Neeraj, 1992, Better Uptake of Nutrients in Transplantation Crops by Inoculation of Endomycorrhizal Fungi and Potential Biological Nitrogen-fixing Microorganisms, Kanpur University, India, Ph.D. thesis.Google Scholar
  67. Neeraj, Shankar, A., and Varma, A., 1991, Occurrence of VA mycorrhizae within Indian semi-desert arid soils, Biol. Fertil. Soils 11:140–144.CrossRefGoogle Scholar
  68. Nopamornbodi, O., Rojanasiriwong, W., and Thamsuakul, S., 1988, Production of VAM fungi, Glomus intraradices and G. mosseae in tissue culture, in: Mycorrhiza for Green Asia (A. Mahadevan, N. Raman, and K. Natarajan, eds.), University of Madras, India, pp. 315–316.Google Scholar
  69. Ocampo, J. A., Martin, J., and Hayman, D. S., 1980, Influence of plant interactions on vesicular arbuscular mycorrhizal infections. I. Host and non-host plants grown together, New Phytol. 84:27–35.CrossRefGoogle Scholar
  70. Pai, G., Bagyaraj, D. J., and Padmavathi Ravindra, T., 1993, Effect of moisture stress on growth and water relations of VA mycorrhizal and non-mycorrhizal cowpea grown at different levels of phosphorus, J. Soil Biol. Ecol. 13:14–24.Google Scholar
  71. Pankow, P., Boiler, T., and Weimken, A., 1991, The significance of mycorrhizas for protective ecosystems, Experientia 47:391–394.CrossRefGoogle Scholar
  72. Phillips, J. H., and Hayman, D. S., 1970, Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection, Trans. Br. Mycol. Soc. 55:158–161.CrossRefGoogle Scholar
  73. Porter, W. M., 1979, The “most probable number” method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil, Aust. J. Soil Res. 17:515–519.CrossRefGoogle Scholar
  74. Powell, C., 1976, Development of mycorrhizal infections from Endogone spores infected root segments, Trans. Br. Mycol. Soc. 66:439–445.CrossRefGoogle Scholar
  75. Powell, C. L., 1979, Spread of mycorrhizal fungi through soil, N. Z. J. Agric. Res. 22:335–339.CrossRefGoogle Scholar
  76. Powell, C. L., and Bagyaraj, D. J., 1982, VA mycorrhizal inoculation of field crops, Proc. N. Z. J. Agron. Soc. 12:85–88.Google Scholar
  77. Powell, C. L., Metcalfe, D. M., Buwalda, J. G., and Waller, J. E., 1980, Phosphate response curves of mycorrhizal and nonmycorrhizal plants. II. Response to rock phosphate, N. Z. J. Agric. Res. 23:477–482.CrossRefGoogle Scholar
  78. Puppi, G., and Bras, A., 1990, Nutrient and water relations of mycorrhizal white clover, Agric. Ecosyst. Environ. 29:317–322.CrossRefGoogle Scholar
  79. Raj, J., Bagyaraj, D. J., and Manjunath, A., 1981, Influence of soil inoculation with vesicular arbuscular mycorrhiza and a phosphate dissolving bacterium on plant growth and 32P uptake, Soil Biol. Biochem. 13:105–108.CrossRefGoogle Scholar
  80. Read, D. J., 1992, Mycorrhizal mycelium, in: Mycorrhizal Functioning: An Intergrative Plant-Fungal Process (M. J. Allen, ed.), Chapman & Hall, New York, pp. 102–133.Google Scholar
  81. Redhead, J. F., 1975, Endotrophic mycorrhizas in Nigeria: Some aspects of the ecology of the endotrophic mycorrhizal association of Khaya grandifolia C. D. D., in: Endomycorrhizas (F. E. Sanders, B. Mosse, and P. B. Tinker, eds.), Academic Press, London, pp. 447–459.Google Scholar
  82. Schenck, N. C., and Kinloch, R. A., 1980, Incidence of mycorrhizal fungi on six field crops in monoculture on a newly cleared woodland site, Mycologia 72:445–455.CrossRefGoogle Scholar
  83. Schenck, N. C., and Schroder, V. N., 1974, Temperature response of endogone mycorrhiza on soybean roots, Mycologia 66:600–605.PubMedCrossRefGoogle Scholar
  84. Schenck, N. C., Graham, S. O., and Green, N. E., 1975, Temperature and light effects on contamination and spore germination of vesicular arbuscular mycorrhizal fungi, Mycologia 67:1189–1192.PubMedCrossRefGoogle Scholar
  85. Schubert, A., and Hayman, D. S., 1986, Plant growth responses to vesicular arbuscular mycorrhiza. XVI. Effectiveness of different endophytes at different levels of soil phosphate. New Phytol. 103:79–80.CrossRefGoogle Scholar
  86. Secilia, J., and Bagyaraj, D. J., 1987, Bacteria and actinomycetes associated with pot culture of VA mycorrhizas, Can. J. Microbiol. 33:1069–1073.CrossRefGoogle Scholar
  87. Sieverding, E., 1986, Research model towards practical application of VA mycorrhizal fungi in tropical agriculture, in: Physiological and Genetical Aspects of Mycorrhizae (V. Gianinazzi-Pearson and S. Gianinazzi, eds.), INRA Press, Dijon, France, pp. 475–478.Google Scholar
  88. Sieverding, E., 1991, Vesicular-Arbuscular Mycorrhiza Management in Tropical Argo Systems, Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn, Germany.Google Scholar
  89. Simon, L., Lalonde, M., and Bruns, T. D., 1992a, Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots, Appl. Environ. Microbiol. 58:291–295.PubMedGoogle Scholar
  90. Simon, L., Roger, C., Lévesque, R. C., and Lalonde, M., 1992b, Rapid quantification by PCR of endomycorrhizal fungi colonising roots, PCR Meth. Application 2:76–80.Google Scholar
  91. Simon, L., Bousquet, J., Lévesque, R. C., and Lalonde, M., 1993a, Origin and diversification of endomycorrhizal fungi and coincidence with vascular plants, Nature 363:67–69.CrossRefGoogle Scholar
  92. Simon, L., Lévesque, R. C., and Lalonde, M., 1993b, Identification of endmycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Appl. Environ. Microbiol 59:4211–4215.PubMedGoogle Scholar
  93. Simpson, D., and Daft, M. J., 1990, Interactions between water-stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum, Plant Soil 121:179–186.CrossRefGoogle Scholar
  94. Singh, K., and Varma, A. J., 1980, Host specificity in Endogonaceae, Trans. Mycol. Soc. Japan 21:477–482.Google Scholar
  95. Singh, K., and Varma, A., 1981, Endogonaceous spores associated with xerophytic plants in northern India, Trans. Br. Mycol. Soc. 77:655–658.CrossRefGoogle Scholar
  96. Smith, S. E., 1995, State of art, discoveries, discussion, and directions in mycorrhizal research, in: Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology, Springer-Verlag, Germany, pp. 3–24.Google Scholar
  97. Sreenivasa, M. N., and Bagyaraj, D. J., 1988a, Chloris gayana (Rhodes grass), a better host for mass production of Glomus fasciculatum, Plant Soil 106:289–290.CrossRefGoogle Scholar
  98. Sreenivasa, M. N., and Bagyaraj, D. J., 1988b, Selection of suitable substrate for mass multiplication of Glomus fasciculatum, Plant Soil 109:125–127.CrossRefGoogle Scholar
  99. Stahl, P. D., and Christensen, M., 1991, Population variation in the mycorrhizal fungus Glomus mosseae: Breadth of environmental tolerance, Mycol. Res. 95:300–307.CrossRefGoogle Scholar
  100. St. John, T. V., 1980, Root size, root hairs and mycorrhizal infection. A re-examination of Baylis’s hypothesis with tropical trees, New Phytol. 84:483–487.CrossRefGoogle Scholar
  101. Sylvia, D. M., and Williams, S. E., 1992, Vesicular arbuscular mycorrhiza and environmental stress, in: Mycorrhiza in Sustainable Agriculture (G. J. Bethlenfalvay and R. G. Linderman, eds.), ASA Special Publication No. 54, American Society of Agromony, Madison, Wisconsin, pp. 101–124.Google Scholar
  102. Sylvia, D. M., Hammond, L. C., Bennett, J. M., Haas, J. H., and Linda, S. B., 1993, Field response of maize to a VAM fungus and water management, Agron. J. 85:193–198.CrossRefGoogle Scholar
  103. TAC Secretariat, 1989, Sustainable Agricultural Production: Implication for International Agricultural Research, Consultative Group on International Agriculture Research, Washington, D.C.Google Scholar
  104. Tinker, P. B., 1975, The soil chemistry of phosphorus and mycorrhizal effects on plant growth, in: Endomycorrhizas (F. E. Sanders, B. Mosse, and P. B. Tinker, eds.), Academic Press, London, pp. 353–371.Google Scholar
  105. Tinker, P. B., Jones, M. D., and Durali, D. M., 1994, Principles of use of radioisotopes in mycorrhizal studies, in: Mycorrhizal Research (J. R. Norris, D. J. Read, and A. K. Varma, eds.), Academic Press, London, pp. 295–308.Google Scholar
  106. Tommerup, I C., 1983, Spore dormancy in vesicular arbuscular mycorrhizal fungi, Trans. Br. Mycol. Soc. 81:37–45.CrossRefGoogle Scholar
  107. Tommerup, I. C., 1987, Physiology and ecology of VAM spore germination and dormancy in soil, in: Mycorrhizae in the Next Decade: Practical Applications and Research Priorities (D. M. Sylvia, L. L. Hung, and H. H. Graham, eds.), University of Florida Publication, Gainesville, pp. 175–177.Google Scholar
  108. Tommerup, I. C., and Kidby, D. K., 1979, Preservation of spores of vesicular arbuscular endophytes by L-drying, Appl. Environ. Microbiol. 37:831–835.PubMedGoogle Scholar
  109. Toth, R., Toth, D., Starke, D., and Smith, D. R., 1990, Vesicular arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens, Can. J. Bot. 66:1039–1044.CrossRefGoogle Scholar
  110. Trappe, J. M., 1981, Mycorrhiza and productivity of arid and semi-arid rangelands, in: Advances in Food Producing Systems for Arid and Semi-arid Lands (J. T. Manassah, and E. J. Briskrel, eds.), Academic Press, London, pp. 581–599.Google Scholar
  111. Trappe, J. M., 1987, Phytogenetic and ecological aspects of mycotrophy in the angiosperms from an evolutionary stand point, in: Ecophysiology of VA Mycorrhizal Plants (G. R. Safir, ed.), CRC Press, Boca Raton, Fl., pp. 5–25.Google Scholar
  112. Varma, A., 1994a, Molecular approaches: Identification of mycorrhizal fungi, in: Plant Microbe Interactions (P. F. Kidwai and R. Singh, eds.), Department of Science and Technology Publications, New Delhi, India, pp. 20–22.Google Scholar
  113. Varma, A., 1995, Ecophysiology of mycorrhizal fungi, in: Mycorrhizae: Structure, Function, Molecular Biology and Biotechnology, Springer-Verlag, Germany, pp. 561–592.Google Scholar
  114. Varma, A., and Schuepp, H., 1994, Infectivity and effectiveness of Glomus intraradices, Mycorrhiza 5:29–37.CrossRefGoogle Scholar
  115. Varma, A., Verma, S., and Schuepp, H., 1994, Mycorrhizae: What we know and what should we know? in: New Approaches in Microbial Ecology (J. P. Tewari, G. Saxena, N. Mittal, and I. Tewari, eds.), Aditya Books, New Delhi, India, pp. 143–154.Google Scholar
  116. Vasanthakrishna, M., and Bagyaraj, D. J., 1993, Selection of efficient VA mycorrhizal fungi for inoculating Casuarina equisetifolia, Arid Soil Res. Rehabil. 7:377–380.CrossRefGoogle Scholar
  117. Walker, C., 1992, Systematics and taxonomy of arbuscular endomycorrhizal fungi (Glomales) a possible way forward, Agronomie 12:887–897.CrossRefGoogle Scholar
  118. Walker, C., and Trappe, J. M., 1993, Names and epithets in the Glomales and endogonales, Mycol. Res. 97:329–344.CrossRefGoogle Scholar
  119. Wallace, H. R., 1978, Dispersal in time and space: Soil pathogens, in: Plant Diseases: An Advanced Treatise, Vol. 2 (J. G. Horsefall and E. B. Cowling, eds.), Academic Press, New York, pp. 181–202.Google Scholar
  120. Warner, A., and Mosse, B., 1982, Factors affecting the spread of vesicular arbuscular mycorrhizal fungi in soil. I. Root density, New Phytol. 90:529–536.CrossRefGoogle Scholar
  121. White, J. A., Munn, L. C., and Williams, S. E., 1989, Dispersal agents of vesicular arbuscular mycorrhizal fungi in a disturbed arid ecosystem, Mycologia 79:721–730.Google Scholar
  122. White, J. A., Depuit, E. J., Smith, J. L., and Williams, S. E., 1992, Vesicular arbuscular mycorrhizal fungi and irrigated mined land reclamation in South Western Wyoming, Soil Sci. Soc. Am. J. 56:1466–1471.CrossRefGoogle Scholar
  123. Wood, T., 1985, Commercial pot culture inoculum production: Quality control and other headaches, in: Proceedings of 6th North American Conferences on Mycorrhizae (R. Molina, ed.), Forest Research Laboratory, Oregon State University, Corvallis, p. 84.Google Scholar
  124. Wood, T. E., and Cummings, B., 1992, Biotechnology and the future of VAM commercializations, in: Mycorrhizal Functioning, An Integrated Plant-Fungal Process (M. J. Allen ed.), Chapman & Hall, New York, pp. 462–487.Google Scholar
  125. Wyss, P., and Bonfante, P., 1993, Amplification of genomic DNA of arbuscular mycorrhizal (AM) fungi by PCR using short arbitrary primers, Mycol. Res. 97:1351–1357.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • D. J. Bagyaraj
    • 1
  • Ajit Varma
    • 2
  1. 1.Department of Agricultural MicrobiologyUniversity of Agricultural SciencesBangaloreIndia
  2. 2.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations