Insoluble, Nonhydrolyzable, Aliphatic Macromolecular Constituents of Microbial Cell Walls

  • Claude Largeau
  • Jan W. De Leeuw
Part of the Advances in Microbial Ecology book series (AMIE, volume 14)


The recognition of nonhydrolyzable, highly aliphatic biomacromolecules stems from the analysis of organic matter present in sediments varying in age from very Recent to hundreds of millions years old. The far greater part of sedimentary organic matter, i.e., over 95%, is high molecular in nature, nonhydrolyzable and insoluble in water and organic solvents, and commonly referred to as kerogen. The total amount of kerogen present in the earth’s crust is presently estimated 30 × 1021 g (Hedges, 1992) and is by far the largest pool of organic carbon on our planet (for comparison: organic carbon in living marine organisms is estimated only 2 × 1015 g C). It has long been known that kerogen-rich deposits act as source rocks of crude oil and gas after burial over eons at elevated temperatures (Tissot and Weite, 1984). As a consequence of its complexity, insolubility, and high-molecular-weight nature, kerogen is one of the most problematic organic substances to characterize on a molecular level. Until a few years ago, it was generally accepted that kerogen resulted from a random condensation process of small amounts of nonmineralized amino acids and monosaccharides, resulting from microbially induced depolymerization of proteins and polysaccharides, respectively, and lipid components (Tissot and Weite, 1984). Such a random condensation was supposed to generate humic type substances in Recent sediments, which upon further burial underwent chemical transformations finally resulting in kerogen. The absence of recognizable entities in most kerogens when studied by light microscopic techniques seemed to support this kerogen formation hypothesis. Recent developments in analytical chemistry have enabled a more detailed analysis of kerogens.


Source Rock Outer Wall Pyrolysis Product Mycolic Acid Botryococcus Braunii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asselineau, C., and Asselineau, J., 1978, Trehalose-containing glycolipids, Prog. Chem. Fats Other Lipids 16:59–99.PubMedCrossRefGoogle Scholar
  2. Asselineau, C., Daffé, M., David, H. L., Lanéelle, M. A., and Rastogi, N., 1984, Lipids as taxonomic markers for bacteria derived from leprosy infection, Acta Leprol. 95:86–92.Google Scholar
  3. Atkinson, A. W., Gunning, B. E. S., and John, P. C. L., 1972, Sporopollenin in the cell wall of Chlorella and other algae: Ulfrastructure, chemistry and incorporation of 14C acetate, studied in synchronous cultures, Planta 107:1–32.CrossRefGoogle Scholar
  4. Barwise, A. J. G., Mann, A. L., Eglinton, G., Gowar, A. P., Wardroper, A. M. K., and Gutteridge, C. S., 1984, Kerogen characterization by 13C NMR spectroscopy and pyrolysis-mass spectrometry, Org. Geochem. 6:343–349.CrossRefGoogle Scholar
  5. Behar, F., Derenne, S., and Largeau, C., 1995, Closed pyrolyses of the isoprenoid algaenan of Botryococcus braunii, L race. Geochemical implications for derived kerogens, Geochim. Cosmochim. Acta, 59:2983–2997.CrossRefGoogle Scholar
  6. Berkaloff, C., Casadevall, E., Largeau, C., Metzger, P., Peracca, S., and Virlet, J., 1983, The resistant polymer of the walls of the hydrocarbon-rich alga Botryococcus braunii, Phytochemistry 22:389–397.CrossRefGoogle Scholar
  7. Biedlingmaier, S., Wanner, G., and Schmidt, A., 1987, A correlation between detergent tolerance and cell wall structure in green algae, Z. Naturforsch. C 42:245–250.Google Scholar
  8. Boussafir, M., Gelin, F., Lallier-Vergés, E., Derenne, S., Bertrand, P., and Largeau, C., 1995, Electron microscopy and pyrolysis of kerogens from the Kimmeridge Clay Formation (U.K.). Source organisms, preservation processes and origin of microcycles, Geochim. Cosmochim. Acta, 59:in press.Google Scholar
  9. Brennan, P. J., 1988, Mycobacterium and other actinomycetes, in: Microbial Lipids, Vol. 1 (C. Ratledge and S. G. Wilkinson, eds.), Academic Press, London, pp. 203–298.Google Scholar
  10. Brunner, U., and Honegger, R., 1985, Chemical and ultrastructural studies on the distribution of sporopollenin-like biopolymers in six genera of lichen phycobionts, Can. J. Bot. 63:2221–2230.CrossRefGoogle Scholar
  11. Chalansonnet, S., Largeau, C., Casadevall, E., Berkaloff, C., Peniguel, G., and Couderc, R., 1988, Cyanobacterial resistant biopolymers. Geochemical implications of the properties of Schizothrix sp. resistant material, Org. Geochem. 13:1003–1010.CrossRefGoogle Scholar
  12. Collinson, M.E., van Bergen, P. F., Scott, A., and de Leeuw, J. W., 1994, The oil-generating potential of plants from coal and coal-bearing strata through time: A review with new evidence from carboniferous plants, in: Coal and Coal-bearing Strata as Oil-prone Source Rocks (A. C. Scott and A. J. Fleet, eds.), Geol. Soc. Special Publ. No. 77, Geological Society, London, 31–70.Google Scholar
  13. Corre, G., Templier, J., and Largeau, C., Influence of cell wall composition on the resistance of microalgae to detergents. 1. Comparative studies of photosynthesis in a TLS-comprising and a TLS-devoid species of Chorella (Chlorophyceae) exposed to Dodecyl benzene sulfonate and Triton X-100, J. Phycology, submitted.Google Scholar
  14. Couderc, F., Aurelle, H., Promé, D., Savagnac, A., and Promé, J. C., 1988, Analysis of fatty acids by negative ion gas chromatography/tandem mass spectrometry: Structural correlations between α-mycolic acid chain and Δ-5-monounsaturated fatty acids from Mycobacterium phlei, Biomed. Environ. Mass Spectr. 16:317–321.CrossRefGoogle Scholar
  15. Daffé, M., Lanéelle, M. A., Puzo, G., and Asselineau, C., 1981, Acide mycolique époxydique: Un nouveau type d’acide mycolique, Tet. Lett. 22:4515–4516.CrossRefGoogle Scholar
  16. de Leeuw, J. W., and Largeau, C., 1993, A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation, in: Organic Geochemistry, Principles and Applications (M. H. Engel and S. A. Macko, eds.), Plenum Press, New York, pp. 23–72.CrossRefGoogle Scholar
  17. de Leeuw, J. W., van Bergen, P. F., van Aarssen, B. G. K., Gatellier, J-P. L. A., Sinninghe Damsté, J. S., and Collinson, M. E., 1991, Resistant biomacromolecules as major contributors to kerogen, Philos. Trans. R. Soc. Lond. Biol. 333:329–337.CrossRefGoogle Scholar
  18. de Leeuw, J. W., Rijpstra, W. I. C., Baas, M., and van de Ende, H., 1995, Lipid profiles of several algaenan-producing freshwater green microalgae, in preparation.Google Scholar
  19. Dempsey, G. P., Lawrence, D., and Cassie, V., 1980, The ultrastructure of Chlorella minutissima Fott et Novahova (Chlorophyceae, Chlorococcales), Pycologia 19:13–19.CrossRefGoogle Scholar
  20. Derenne, S., Largeau, C., Casadevall, E., and Laupretre, F., 1987, Mise au point—The quantitative analysis of coals and kerogens by 13C CP/MAS n.m.r., J. Chim. Phys. 10:1231–1238.Google Scholar
  21. Derenne, S., Largeau, C., Casadevall, E., and Berkaloff, C., 1989, Occurrence of a resistant biopolymer in the L race of Botryococcus braunii, Phytochemistry 28:1137–1142.CrossRefGoogle Scholar
  22. Derenne, S., Largeau, C., Casadevall, E., and Sellier, N., 1990, Direct relationship between the resistant biopolymer and the tetraterpenic hydrocarbon in the lycopadiene-race of Botryococcus braunii, Phytochemistry 29:2187–2192.CrossRefGoogle Scholar
  23. Derenne, S., Largeau, C., Casadevall, E., Berkaloff, C., and Rousseau, B., 1991, Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae: Origin of ultralaminae, Geochim. Cosmochim. Acta 55:1041–1050.CrossRefGoogle Scholar
  24. Derenne, S., Largeau, C., Berkaloff, C., Rousseau, B., Wilhelm, C., and Hatcher, P., 1992a, Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum, Phytochemistry 31:1923–1929.CrossRefGoogle Scholar
  25. Derenne, S., Largeau, C., and Hatcher, P. G., 1992b, Structure of Chlorella fusca algaenan: Relationships with ultralaminae in lacustrine kerogens; species-and environment-dependent variations in the composition of fossil ultralaminae, Org. Geochem. 18:417–422.CrossRefGoogle Scholar
  26. Derenne, S., Le Berre, F., Largeau, C., Hatcher, P., Connan, J., and Raynaud, J. F., 1992c, Formation of ultralaminae in marine kerogens via selective preservation of thin resistant outer walls of microalgae, Org. Geochem. 19:345–350.CrossRefGoogle Scholar
  27. Derenne, S., Metzger, P., Largeau, C., van Bergen, P. F., Gateliier, J. P., Sinninghe Damsté, J. S., and de Leeuw, J. W., 1992d, Similar morphological and chemical variations of Gloeocapsomorpha prisca in Ordovician sediments and cultured Botryococcus braunii as a response to changes in salinity, Org. Geochem. 19:299–313.CrossRefGoogle Scholar
  28. Derenne, S., Largeau, C., and Taulelle, F., 1993, Occurrence of non-hydrolysable amides in the macromolecular constituent of Scenedesmus quadricauda cell wall as revealed by 15N NMR. Origin of n-alkylnitriles in pyrolysates of ultralamine-containing kerogens, Geochim. Cosmochim. Acta 57:851–857.CrossRefGoogle Scholar
  29. Derenne, S., Largeau, C., and Behar, F., 1994, Low polarity pyrolysis products of Permian to Recent Botryococcus-rich sediments: First evidence for the contribution of an isoprenoid algaenan to kerogen formation, Geochim. Cosmochim. Acta 58:3703–3711.CrossRefGoogle Scholar
  30. Devries, P. J. R., Simmons, J., and Van Beern, A. P., 1983, Sporopollenin in the spore wall of Spirogyra (Zygnemataceae, Chlorophyceae), Acta Bota. Neerl. 32:25–28.Google Scholar
  31. Flaviano, C., Le Berre, F., Derenne, S., Largeau, C., and Connan, J., 1994, First indications of the formation of kerogen amorphous fractions by selective preservation. Role of non-hydrolysable macromolecular constituents of Eubacterial cell walls, Org. Geochem. 22:759–771.CrossRefGoogle Scholar
  32. Furch, B., and Gooday, G. W., 1978, Sporopollenin in Phycomyces blakesleeanus, Trans. Br. Mycol. Soc. 70:307–309.CrossRefGoogle Scholar
  33. Gatellier, J-P. L. A., de Leeuw, J. W., Sinninghe Damsté, J. S., Derenne, S., Largeau, C., and Metzger, P., 1993, A comparative study of macromolecular substances of a Coorongite and cell walls of the extant alga Botryococcus braunii, Geochim. Cosmochim. Acta 57:2053–2068.CrossRefGoogle Scholar
  34. Gelin, F., Gatellier, J-P. L. A., Sinninghe Damsté, J. S., Metzger, P., Derenne, S., Largeau, C., and de Leeuw, J. W., 1993, Mechanisms of flash pyrolysis of ether lipids isolated from the green microalga Botryococcus braunii race A, J. Anal. App. Pyrol. 27:155–168.CrossRefGoogle Scholar
  35. Gelin, F., de Leeuw, J. W., Sinninghe Damsté, J. S., Derenne, S., Largeau, C., and Metzger, P., 1994a, The similarity of chemical structures of soluble aliphatic polyaldehyde and insoluble algaenan in the green microalga Botryococcus braunii race A as revealed by analytical pyrolysis, Org. Geochem. 21:423–435.CrossRefGoogle Scholar
  36. Gelin, F., de Leeuw, J. W., Sinninghe Damsté, J. S., Derenne, S., Largeau, C., and Metzger, P., 1994b, Scope and limitations of flash pyrolysis-gas chromatography-mass spectrometry as revealed by the thermal behaviour of high-molecular-weight lipids derived from the green microalga Botryococcus braunii, J. Anal. Appl. Pyrol. 28:183–204.CrossRefGoogle Scholar
  37. Gillaizeau, B., Derenne, S., Behar, F., Berkaloff, C., and Largeau, C., 1995, Main source organisms and mode of formation of the Goynuk oil shale (Turkey), Org. Geochem., submitted.Google Scholar
  38. Good, B. H., and Chapman, R. L., 1978, The ultrastructure of Phycopeltis (Chroolepidaceae: Chlorophyta). I. Sporopollenin in cell walls, Am. J. Bot. 65:27–33.CrossRefGoogle Scholar
  39. Goth, K., de Leeuw, J. W., Püttmann, W., and Tegelaar, E. W., 1988, Origin of Messel oil shale kerogen, Nature 336:759–761.CrossRefGoogle Scholar
  40. Gunnison, D., and Alexander, M., 1975, Basis for the resistance of several algae to microbial decomposition, Appl. Microbiol. 1975:729–738.Google Scholar
  41. Hedges, J. I., 1992, Global biogeochemical cycles: Progress and problems, Mar. Chem. 39:67–93.CrossRefGoogle Scholar
  42. Hegewald, E., and Schnepf, E., 1974, Contribution to the knowledge of the green alga Scenesdesmus verrucosus. Roll, Arch. Hydrobiol. 46(suppl):151–162.Google Scholar
  43. Honegger, R., and Brunner, U., 1981, Sporopollenin in the cell walls of Coccomyxa and Myrmecia phycobionts of various lichens: An ultrastructural and chemical investigation, Can. J. Bot. 59:2713–2734.CrossRefGoogle Scholar
  44. Hull, H. M., Hoshaw, R. W., and Wang, J. C., 1985, Interpretation of zygospore wall structure and taxonomy of Spirogyra and Sirogonium (Zygnemataceae, Chlorophyta), Phycologia 24:231–239.CrossRefGoogle Scholar
  45. Kadouri, A., Derenne, S., Largeau, C., Casadevall, E., and Berkaloff, C., 1988, Resistant biopolymer in the outer walls of Botryococcus braunii B Race, Phytochemistry 27:551–557.CrossRefGoogle Scholar
  46. Kalina, T., and Puncocharova, M., 1987, Taxonomy of the subfamily Scotiellocystoidaea Fott 1976 (Chlorellaceae, Chlorophyceae), Arch. Hydrobiol. 73(suppl):473–521.Google Scholar
  47. Kister, J., Guiliano, M., Largeau, C., Derenne, S., and Casadevall, E., 1990, Characterization of chemical structure, degree of maturation and oil potential of Torbanites (type I kerogens) by quantitative FTIR spectroscopy, Fuel 69:1356–1361.CrossRefGoogle Scholar
  48. Komarek, J., 1987, Species concept of coccal green algae, Arch. Hydrobiol. 73(suppl.):437–471.Google Scholar
  49. Landais, P., Rochdi, A., Largeau, C., and Derenne, S., 1993, Chemical characterization of Torbanites by transmission micro-FTIR spectroscopy. Origin and extent of compositional heterogeneities, Geochim. Cosmochim. Acta. 57:2529–2539.CrossRefGoogle Scholar
  50. Largeau, C., Casadevall, E., Berkaloff, C., and Dhamelincourt, P., 1980a, Sites of accumulation and composition of hydrocarbons in Botryococcus braunii, Phytochemistry 19:1043–1051.CrossRefGoogle Scholar
  51. Largeau, C., Casadevall, E., and Berkaloff, C., 1980b, The biosynthesis of long-chain hydrocarbons in the green alga Botryococcus braunii, Phytochemistry 19:1081–1085.CrossRefGoogle Scholar
  52. Largeau, C., Casadevall, E., Kadouri, A., and Metzger, P., 1984, Formation of Botryococcus braunii kerogens. Comparative study of immature Torbanite and of the extant alga Botryococcus braunii, Org. Geochem. 6:327–332.CrossRefGoogle Scholar
  53. Largeau, C., Derenne, S., Casadevall, E., Kadouri, A., and Sellier, N., 1986, Pyrolysis of immature Torbanite and of the resistant biopolymer (PRB A) isolated from extant alga Botryococcus braunii. Mechanism of formation and structure of Torbanite, Org. Geochem. 10:1023–1032.CrossRefGoogle Scholar
  54. Largeau, C., Derenne, S., Clairay, C., Casadevall, E., Raynaud, J. F., Lugardon, B., Berkaloff, C., Corolleur, M., and Rousseau, B., 1990a, Characterization of various kerogens by scanning electron microscopy (SEM) and transmission electron microscopy (TEM)—Morphological relationships with resistant outer walls in extant microorganisms, Meded. Rijks Geol. Dienst. 45:91–101.Google Scholar
  55. Largeau, C., Derenne, S., Casadevall, E., Berkaloff, C., Corolleur, M., Lugardon, B., Raynaud, J. F., and Connan, J., 1990b, Occurrence and origin of “ultralaminar” structures in “amorphous” kerogens of various source rocks and oil shales Org. Geochem. 16:889–895.CrossRefGoogle Scholar
  56. Larsen, H., 1984, Halococcus Schoop 1935, in: Bergey’s Manual of Systematic Bacteriology, Vol. 1 (N. R. Krieg and J. G. Holt, eds.), Williams and Williams, Baltimore, pp. 266–267.Google Scholar
  57. Laureillard, J., Largeau, C., Waeghmaeker, F., and Casadevall, E., 1986, Biosynthesis of the resistant polymer in the alga Botryococcus braunii. Studies on the possible direct precursors, J. Nat. Prod. 49:794–799.CrossRefGoogle Scholar
  58. Laureillard, J., Largeau, C., and Casadevall, E., 1988, Oleic acid in the biosynthesis of the resistant biopolymers of Botryococcus braunii, Phytochemistry 27:2095–2098.CrossRefGoogle Scholar
  59. Le Berre, F., 1992, Formation de Kérogènes par Préservation Sélective de Biopolymères résistants (PR) de Parois de Microorganisms, Université Pierre et Marie Curie, Paris, Ph.D. thesis.Google Scholar
  60. Le Berre, F., Derenne, S., Largeau, C., Connan, J., and Berkaloff, C., 1991, Occurrence of non-hydrolysable, macromolecular, wall constituents in bacteria. Geochemical implications, in: Organic Geochemistry Advances and Applications in Energy and the Nature Environment (D. A. C. Manning, ed.), University Press, Manchester, England, pp. 428–431.Google Scholar
  61. Lederer, E., Adam, A., Ciorbaru, F., Petit, J. F., and Weitzerbin, J., 1975, Cell walls of Mycobacteria and related organisms: Chemistry and immunostimulant properties, Mol. Cell. Biochem. 7:87–104.PubMedCrossRefGoogle Scholar
  62. Margulis, L., Hinkle, G., McKhann, H., and Moynihan, B., 1988, Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)—an intertidal alga forming achlorophyllous dessication-resistant cysts, Arch. Hydrobiol. 78(suppl.):425–446.Google Scholar
  63. McNeil, M., Daffé, M., and Brennan, P., 1990, Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls, J. Biol. Chem. 265:18200–18206.PubMedGoogle Scholar
  64. McNeil, M., Daffé, M., and Brennan, P., 1991, Location of the mycolyl ester substituents in the cell walls of Mycobacteria, J. Biol. Chem. 265:13217–13223.Google Scholar
  65. Metzger, P., 1994, Phenolic ether lipids with an n-alkenylresorcinol moiety from a bolivian strain of Botryococcus braunii (A race), Phytochemistry 36: 195–212.Google Scholar
  66. Metzger, P., and Largeau, C., 1994, A new type of ether lipids comprising phenolic moieties in Botryococcus braunii. Chemical structure and abundance, geochemical implications, Org. Geochem. 22:801–814.Google Scholar
  67. Metzger, P., David, M., and Casadevall, E., 1987, Biosynthesis of triterpenoid hydrocarbons in the B race of the green alga Botryococcus braunii. Sites of production and nature of the methylating agent, Phytochemistry 26:129–134.CrossRefGoogle Scholar
  68. Metzger, P., Largeau, C., and Casadevall, E., 1991, Lipids and macromolecular lipids of the hydrocarbon-rich microalga Botryococcus braunii. Chemical structure and biosynthesis. Geochemical and Biotechnological importance, in: Progress in the Chemistry of Organic Natural Products, Vol. 57 (W. Herz, G. W. Kirby, W. Steglich, and C. Tamm, eds.), Springer-Verlag, Wien, New-York, pp. 1–70.CrossRefGoogle Scholar
  69. Michaelis, W., and Albrecht, P., 1979, Molecular fossils of Archaebacteria in kerogen, Naturwissenschaften 66:420–422.CrossRefGoogle Scholar
  70. Minnikin, D. E., 1982, Lipids: Complex lipids, their chemistry, biosynthesis and roles, in: The Biology of the Mycobacteria, Vol. 2 (C. Ratledge and J. Stanford, eds.), Academic Press, London, pp. 95–184.Google Scholar
  71. Plain, N., Largeau, C., Derenne, S., and Couté, A., 1993, Variabilité morphologique de Botryococcus braunii (Chlorococcales, Chlorophyta): Corrélations avec les conditions de croissance et la teneur en lipides, Phycologia 32:259–265.CrossRefGoogle Scholar
  72. Puel, F., Largeau, C., and Giraud, G., 1987, Occurrence of a resistant biopolymer in the outer walls of the parasitic alga Prototheca wickerhamii (Chlorococcales): Ultrastructural and chemical studies, J. Phycol. 23:649–656.CrossRefGoogle Scholar
  73. Raynaud, J-F., Lugardon, B., and Lacrampe-Couloume, G., 1989, Lamellar structures and bacteria as main components of the amorphous matter of source rocks, Bull. C.R. Explor. Prod. Elf-Aquitaine 13:1–21.Google Scholar
  74. Sabelle, S., Oliver, E., Metzger, P., Derenne, S., and Largeau, C., 1993, Variability in phenol moieties in the resistant biomacromolecules of the A and B races of Botryococcus braunii. Geochemical implications, in: Organic Geochemistry (K. Øygard, ed.) Falch Hurtigtrykk, Oslo, pp. 558–562.Google Scholar
  75. Schouten, S., Ahmed, M., Moerkerken, P., and de Leeuw, J. W., 1995, RuO4 oxidation of algaenans, cutans and kerogens, in preparation.Google Scholar
  76. Serruya, C., Edelstein, M., Pollingher, U., and Serruya, S., 1974, Lake kinneret sediments: Nutrient composition of the pore water and mud water exchanges, Limnol. Oceanogr. 19:489–508.CrossRefGoogle Scholar
  77. Shilo, M., 1970, Lysis of blue-green algae by Myxobacter, J. Bacteriol. 104:453–461.PubMedGoogle Scholar
  78. Strohl, W. R., Larkin, J. M., Good, B. H., and Chapman, R. L., 1977, Isolation of sporopollenin from four myxobacteria, Can. J. Microbiol. 23:1080–1083.PubMedCrossRefGoogle Scholar
  79. Syrett, R. J., and Thomas, E. M., 1973, The assay of nitrate reductase in whole cells of Chlorella: Strain differences and the effect of cell walls, New Phytol. 72:1307–1313.CrossRefGoogle Scholar
  80. Tegelaar, E. W., de Leeuw, J. W., and Holloway, P. J., 1989a, Some mechanisms of flash pyrolysis of naturally occurring higher plant polyesters, J. Anal. Appl. Pyrol. 15:289–295.CrossRefGoogle Scholar
  81. Tegelaar, E. W., Derenne, S., Largeau, C., and de Leeuw, J. W., 1989b, A reappraisal of kerogen formation, Geochim. Cosmochim. Acta 53:3103–3107.CrossRefGoogle Scholar
  82. Tegelaar, E. W., Matthezing, R. M., Jansen, B. H., Horsfield, B., and de Leeuw, J. W., 1989c, Possible origin of n-alkanes in high-wax crude oils, Nature 342:529–531.CrossRefGoogle Scholar
  83. Templier, J., Diesendorf, C., Largeau, C., and Casadevall, E., 1992a, Metabolism of n-alkadienes in the A race of Botryococcus braunii, Phytochemistry 31:113–120.CrossRefGoogle Scholar
  84. Templier, J., Largeau, C., Casadevall, E., and Berkaloff, C., 1992b, Chemical inhibition of resistant biopolymers in outer walls of the A and B races of Botryococcus braunii, Phytochemistry 31:4097–4104.CrossRefGoogle Scholar
  85. Templier, J., Largeau, C., and Casadevall, E., 1993, Variations in external and internal lipids associated with inhibition of the resistant biopolymer from the A race of Botryococcus braunii, Phytochemistry 33:1079–1086.CrossRefGoogle Scholar
  86. Tissot, B. P., and Weite, D. H., 1984, Petroleum Formation and Occurrence, 2nd ed., Springer, Heidelberg.Google Scholar
  87. Woese, C. R., Magrum, L. J., and Fox, G. E., 1978, Archaebacteria, J. Mol. Evol. 11:245–252.PubMedCrossRefGoogle Scholar
  88. Yamamoto, Y., and Suzuki, K., 1990, Distribution and algalysing activity of fruiting myxobacteria in lake Suwa, J. Phycol. 26:457–462.CrossRefGoogle Scholar
  89. Zarsky, V., Kalina, T., and Sulek, J., 1985, Notes on the sexual reproduction of Chlamydomonas geitleri, Arch. Protistenk, 130:343–353.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • Claude Largeau
    • 1
  • Jan W. De Leeuw
    • 2
  1. 1.Laboratoire de Chimie Bioorganique et Organique Physique, UA CNRS D1381Ecole Nationale Supérieure de Chimie de ParisParis Cedex 05France
  2. 2.Division of Marine BiogeochemistryNetherlands Institute for Sea Research (NIOZ)Den Burg TexelThe Netherlands

Personalised recommendations