Behavioral Strategies of Surface-Colonizing Bacteria

  • John R. Lawrence
  • D. R. Korber
  • G. M. Wolfaardt
  • D. E. Caldwell
Part of the Advances in Microbial Ecology book series (AMIE, volume 14)


Bacterial survival and reproductive success in many systems requires colonization of a surface and/or integration into a biofilm community. Success in a community context requires morphological, physiological, and genetic attributes that have only recently been explored. Previously, many aspects of microbial behavior at interfaces have been explained in terms of physicochemical interactions. Indeed, Van Loosdrecht et al. (1989) concluded that virtually no studies have shown a bacterial response to a surface. However, many studies past and present have shown specific responses to the surface environment, including chemoadherence, morphogenesis, gene induction, and variable rates of polymer production (McCarter et al., 1988, 1992; Vandevivere and Kirchman, 1993). The induction of many genetic pathways has been shown to be surface-specific phenomena. Ample evidence has also been provided for behavioral strategies that only function during surface colonization and growth (Kjelleberg et al., 1982; Lawrence et al., 1987, 1991, 1992; Lawrence and Caldwell, 1987; Power and Marshall, 1988; Lawrence and Korber, 1993). These strategies represent essential elements for multicellular community growth and are expressed as specific adaptations, life cycle alternation between attached and planktonic growth, as well as formation and maintenance of microcolonies, aggregates, and consortia.


Microbial Community Pseudomonas Fluorescens Surface Colonization Bacterial Attachment Microbial Adhesion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Absolom, D. R., Lamberti, F. V., Policova, Z., Zingg, W., Van Oss, C. J., and Neumann, A. W., 1983, Surface thermodynamics of bacterial adhesion, Appl. Environ. Microbiol. 46:90–97.PubMedGoogle Scholar
  2. Adamczyk, Z., and Van de Ven, T. G. M., 1981, Deposition of particles under external forces in laminar flow through parallel-plate and cylindrical channels, J. Colloid Interface Sci. 80:340–357.CrossRefGoogle Scholar
  3. Adler, J., 1969, Chemoreceptors in bacteria, Science 166:1588–1597.PubMedCrossRefGoogle Scholar
  4. Adler, J., 1975, Chemotaxis in bacteria, Annu. Rev. Biochem. 44:341–355.PubMedCrossRefGoogle Scholar
  5. Adler, J., and Templeton, B., 1967, The effect of environmental conditions on the motility of Escherichia coli, J. Gen. Microbiol. 46:175–184.PubMedGoogle Scholar
  6. Alldredge, A. L., and Cohen, Y., 1987, Can microscale chemical patches persist at sea? Micro-electrode study of marine snow, fecal pellets, Science 235:689–691.PubMedCrossRefGoogle Scholar
  7. Allison, D. G., and Sutherland, I. W., 1987, The role of exopolysaccharides in adhesion of freshwater bacteria, J. Gen. Microbiol. 133:1319–1327.Google Scholar
  8. Amann, R. I., Krumholz, L., and Stahl, D. A., 1990, Fluorescent oligonucleotide probing of whole cells for determinative phylogenetic, and environmental studies in microbiology, J. Bacteriol. 172:762–770.PubMedGoogle Scholar
  9. Amann, R. I., Stromley, J., Devereux, R., Key, R., and Stahl, D. A., 1992, Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms, Appl. Environ. Microbiol. 48:614–623.Google Scholar
  10. Assmus, B., Hutzler, P., Kirchhof, G. Amann, R., Lawrence, J. R., and Hartmann, A., 1995, In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy, Appl. Environ. Microbiol. 61:1013–1019.PubMedGoogle Scholar
  11. Baier, R. E., 1980, Substrate influence on adhesion of microorganisms and their resultant new surface properties, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley-Interscience, New York, pp. 59–104.Google Scholar
  12. Baier, R. E., 1984, Initial events in microbial film formation, in: Marine Biodeterioration: An Interdisciplinary Approach (J. D. Costlow and R. C. Tipper, eds.), E. and F. N. Spon Ltd., London, pp. 57–62.CrossRefGoogle Scholar
  13. Baier, R. E., 1985, Adhesion in the biologic environment, Biomater. Med. Devices Artif. Organs 12:133–159.Google Scholar
  14. Baker, J. H., 1984, Factors affecting the bacterial colonization of various surfaces in a river, Can. J. Microbiol. 30:511–515.CrossRefGoogle Scholar
  15. Bale, M. J., Fry, J. C., and Day, M. J., 1987, Transfer and occurrence of large mercury resistance Plasmids in river epilithion, Appl. Environ. Microbiol. 54:972–978.Google Scholar
  16. Bale, M. J., Day, M. J., and Fry, J. C., 1988, Novel method for studying plasmid transfer in undisturbed river epilithon, Appl. Environ. Microbiol. 54:2756–2758.PubMedGoogle Scholar
  17. Banks, M. K., and Bryers, J. D., 1991, Bacterial species dominance within a binary culture biofilm, Appl. Environ. Microbiol. 57:1874–1979.Google Scholar
  18. Barkay, T., Turner, R., Vandenbrook, A., and Liebert, C., 1991, The relationships of Hg (II) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community, Microb. Ecol. 21:151–161.CrossRefGoogle Scholar
  19. Baiteli, P. F., Orr, T. E., and Chudio, B., 1970, Purification and chemical composition of the protective slime antigen of Pseudomonas aeruginosa, Infect. Immun. 2:543–548.Google Scholar
  20. Belas, M. R., and Colwell, R. R., 1982, Adsorption kinetics of laterally and polarly flagellated Vibrio, J. Bacteriol. 151:1568–1580.PubMedGoogle Scholar
  21. Bell, J. P., and Tsezos, K., 1987, Removal of hazardous organic pollutants by biomass adsorption, J. Water Poll. Control Fed. 59:191–198.Google Scholar
  22. Bellin, C. A., and Rao, P. S. C., 1993, Impact of bacterial biomass on contaminant sorption and transport in a subsurface soil, Appl. Environ. Microbiol. 59:1813–1820.PubMedGoogle Scholar
  23. Bellon-Fontaine, M.-N., Mozes, N., van der Mei, H. C., Sjollema, J., Cerf, O., Rouxhet, P. G., and Busscher, H. J., 1990, A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata, Cell. Biophys. 17:93–106.PubMedGoogle Scholar
  24. Bengtsson, G., 1991, Bacterial exopolymer and PHB production in fluctuating groundwater habitats, FEMS Microbiol. Lett. 86: 15–24.CrossRefGoogle Scholar
  25. Berg, H. C., 1985, Physics of bacterial chemotaxis, in: Sensory Perception and Transduction in Aneural Organisms (G. Colombetti, F. Linci, and P-S. Song, eds.), Plenum Press, London, pp. 19–30.CrossRefGoogle Scholar
  26. Berg, H. C., and Brown, D. A., 1972, Chemotaxis in Escherichia coli analyzed by three-dimensional tracking, Nature 239:500–504.PubMedCrossRefGoogle Scholar
  27. Biddanda, B. A., and Pomeroy, I. R., 1988, Microbial aggregation and dehydration of phytoplankton-derived detritus in seawater. I. Microbial succession, Mar. Ecol. Prog. Ser. 42:79–88.CrossRefGoogle Scholar
  28. Block, S. M., Segali, J. E., and Berg, H. C., 1983, Adaptation kinetics in bacterial chemotaxis, J. Bacteriol. 154:312–324.PubMedGoogle Scholar
  29. Bochem, H. P., Schoberth, S. M., Sprey, B., and Wengler, P., 1982, Thermophilic biomethanation of acetic acid: Morphology and ultrastructure of a granular consortium, Can. J. Microbiol. 28:500–510.CrossRefGoogle Scholar
  30. Boone, D. R., Johnson, R. L., and Liu, Y., 1989, Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake, Appl. Environ. Microbiol. 55:1735–1741.PubMedGoogle Scholar
  31. Bott, T. L., and Brock, T. D., 1970, Growth and metabolism of periphytic bacteria: Methodology, Limnol. Oceanogr. 20:191–197.CrossRefGoogle Scholar
  32. Bottomley, P. J., and Maggard, S. P., 1990, Determination of viability within serotypes of a soil population of Rhizobium leguminosarum bv. trifola, Appl. Environ. Microbiol. 56:533–540.PubMedGoogle Scholar
  33. Bouwer, E. J., 1989, Transformations of xenobiotics in biofilms, in: Structure and Function of Biofilms (W. G. Characklis and P. H. Wilderer, eds.), Wiley and Sons, Toronto, Canada, pp. 251–267.Google Scholar
  34. Bouwer, E. J., and McCarty, P. L., 1982, Removal of trace chlorinated organic compounds by activated carbon and fixed film bacteria, Environ. Sci. Technol. 16:836–843.PubMedCrossRefGoogle Scholar
  35. Bowen, J. D., Stolzenbach, K. D., and Chrisholm, S. W., 1993, Simulating bacterial clustering around phytoplankton cells in a turbulent ocean, Limnol. Oceanogr. 38:36–51.CrossRefGoogle Scholar
  36. Bratbak, G., Heldal, M., Naess, A., and Roeggen, T., 1993, Viral impact on microbial communities, in: Trends in Microbial Ecology (R. Guerrero and C. Pedrós-Alío, eds.), Spanish Society for Microbiology, Barcelona, Spain, pp. 299–302.Google Scholar
  37. Brown, M. J., and Lester, J. N., 1982a, Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—I, Water Res. 16:1539–1548.CrossRefGoogle Scholar
  38. Brown, M. J., and Lester, J. N., 1982b, Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—II: Effects of mean cell retention time, Water Res. 16:1549–1560.CrossRefGoogle Scholar
  39. Brown, M. R. W., and Gilbert, R., 1993, Sensitivity of biofilms to antimicrobial agents, in: Microbial Cell Envelopes: Interactions and Biofilms (L. B. Quesnel, P. Gilbert, and P. S. Handley, eds.), Blackwell Scientific, Oxford, England, pp. 87S–97S.Google Scholar
  40. Brown, M. R. W., Allison, D. G., and Gilbert, G., 1988, Resistance of bacterial biofilms to antibiotics: A growth-rate related effect? J. Antimicrob. Chemother. 22:777–780.PubMedCrossRefGoogle Scholar
  41. Bryers, J. D., 1987, Biologically active surfaces: Processes governing the formation and persistence of biofilms, Biotechnol. Prog. 3:57–68.CrossRefGoogle Scholar
  42. Burchard, R. P., 1981, Gliding motility of prokaryotes: Ultrastructure, physiology, and genetics, Annu. Rev. Microbiol. 35:497–529.PubMedCrossRefGoogle Scholar
  43. Burchard, R. P., 1984, Inhibition of Cytophaga sp. strain U67 gliding motility by inhibitors of peptide synthesis, Arch. Microbiol. 139:248–254.CrossRefGoogle Scholar
  44. Burchard, R. P., Rittschof, D., and Bonaventura, J., 1990, Adhesion and motility of gliding bacteria on substrata with different surface free energies, Appl. Environ. Microbiol. 56:2529–2534.PubMedGoogle Scholar
  45. Busscher, H. J., Bellon-Fontaine, M.-N., Mozes, N, Van Der Mei, H. C., Sjollema, J., Cerf, O., and Rouxhet, P. G., 1990a, Deposition of Leuconostoc mesenteroides and Streptococcus thermophilius to solid substrata in a parallel plate flow cell, Biofouling 2:55–63.CrossRefGoogle Scholar
  46. Busscher, H. J., Bellon-Fontaine, Sjollema, J., and Van Der Mei, H. C., 1990b, Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces, in: Microbial Cell Surface Hydrophobicity (R. J. Doyle and M. Rosenberg, eds.), American Society for Microbiology Press, Washington, D.C., pp. 335–359.Google Scholar
  47. Busscher, H. J., Cowan, M. M., and Van Der Mei, H. C., 1992, On the relative importance of specific and non-specific approaches to oral microbial adhesion, FEMS Microbiol. Rev. 88:199–210.CrossRefGoogle Scholar
  48. Byrd, J. J., Zeph, L. R., and Casida Jr., L. E., 1985, Bacterial control of Agromyces ramosus in soil, Can. J. Microbiol. 31:157–1163.CrossRefGoogle Scholar
  49. Caldwell, D. E., 1993, The microstat: Steady-state microenvironments for subculture of steady-state consortia, communities, and microecosystems, in: Trends in Microbial Ecology (R. Guerrero and C. Pedrós-Alío, eds.), Spanish Society for Microbiology, Barcelona, Spain, pp. 123–128.Google Scholar
  50. Caldwell, D. E., and Lawrence, J. R., 1986, Growth kinetics of Pseudomonas fluorescens microcolonies within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol. 12:299–312.CrossRefGoogle Scholar
  51. Caldwell, D. E., Korber, D. R., and Lawrence, J. R., 1992a, Confocal laser microscopy and digital image analysis in microbial ecology, in: Advances in Microbial Ecology, Vol. 12 (K. C. Marshall, ed.), Plenum Press, New York, pp. 1–67.CrossRefGoogle Scholar
  52. Caldwell, D. E., Korber, D. R., and Lawrence, J. R., 1992b, Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser microscopy, J. Microbiol. Methods 15:249–261.CrossRefGoogle Scholar
  53. Caldwell, D. E., Korber, D. R., and Lawrence, J. R., 1993, Analysis of biofilm formation using 2-D versus 3-D digital imaging, in: Microbial Cell Envelopes: Interactions and Biofilms (L. B. Quesnel, P. Gilbert, and P. S. Handley, eds.), Blackwell Scientific, Oxford, England, pp. 52S–66S.Google Scholar
  54. Camper, A. K., Hayes, J. T., Sturman, P. J., Jones, W. L., and Cunningham, A. B., 1993, Effects of motility and adsorption rate coefficient on transport of bacteria through saturated porous media, Appl. Environ. Microbiol. 59:3455–3462.PubMedGoogle Scholar
  55. Caron, D. A., 1987, Grazing of attached bacteria by heterotrophic microflagellates, Microb. Ecol. 13:203–218.CrossRefGoogle Scholar
  56. Casida, L. E., Jr., 1992, Competitive ability and survival in soil of Pseudomonas strain 679-2, a dominant, nonobligate bacterial predator of bacteria, Appl. Environ. Microbiol. 58:32–37.PubMedGoogle Scholar
  57. Characklis, W. G., 1990, Biofilm processes, in: Biofilms (W. G. Characklis and K. C. Marshall, eds.), Wiley and Sons, New York, pp. 195–231.Google Scholar
  58. Characklis, W. G. and Marshall, K. C. (eds.), 1990, Biofilms, Wiley-Interscience, New York.Google Scholar
  59. Characklis, W. G., McFeters, G. A., and Marshall, K. C., 1990a, Physicological ecology in biofilm systems, in: Biofilms (W. G. Characklis and K. C. Marshall, eds.), Wiley and Sons, New York, pp. 341–393.Google Scholar
  60. Characklis, W. G., Turakhia, M. H. and Zelver, N., 1990b, Transfer and interfacial transport phenomena, in: Biofilms (W. G. Characklis and K. C. Marshall, eds.), Wiley and Sons, New York, pp. 265–340.Google Scholar
  61. Chatfield, L. K., and Williams, P. A., 1986, Naturally occurring TOL plasmids in Pseudomonas strains carry either two homologous or two nonhomologous catechol 2,3-oxygenase genes, J. Bacteriol. 168:878–885.PubMedGoogle Scholar
  62. Christensen, B. E., and Characklis, W. G., 1990, Physical and chemical properties of biofilms, in: Biofilms (W. G. Characklis and K. C. Marshall, eds.), Wiley and Sons, New York, pp. 93–130.Google Scholar
  63. Christensen, B. E., Kjosbakken, J., and Smidsrød, O., 1985, Partial chemical and physical characterization of two extracellular polysaccharides produced by marine, periphytic Pseudomonas sp. Strain NCMB 2021, Appl. Environ. Microbiol. 50:837–845.PubMedGoogle Scholar
  64. Christersson, C. E., Glantz, P-O. J., and Baier, R. E., 1988, Role of temperature and shear forces on microbial detachment, Scand. J. Dent. Res. 96:91–98.PubMedGoogle Scholar
  65. Clarholm, M., 1981, Protozoan grazing of bacteria in soil-impact and importance, Microb. Ecol. 7:343–350.CrossRefGoogle Scholar
  66. Clarholm, M., 1984, Heterotrophic, free-living protozoa: Neglected microorganisms with an important task in regulating bacterial populations, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), American Society for Microbiology Press, Washington, D. C., pp. 321–326.Google Scholar
  67. Confer, D. R., and Logan, B. E., 1991, Increased bacterial uptake of macromolecular substrates with fluid shear, Appl. Environ. Microbiol. 57:3093–3100.PubMedGoogle Scholar
  68. Costerton, J. W., 1984, The formation of biocide-resistant biofilms in industrial, natural and medical systems, Dev. Ind. Microbiol. 25:363–372.Google Scholar
  69. Costerton, J. W., Irvin, R. T., and Cheng, K. J., 1981, The bacterial glycocalyx in nature and disease, Annu. Rev. Microbiol. 35:299–324.PubMedCrossRefGoogle Scholar
  70. Costerton, J. W., Cheng, K-J., Geesey, G. G., Ladd, T. I., Nickel, N. C., Dasgupta, M., and Marrie, T. J., 1987, Bacterial biofilms in nature and disease, Annu. Rev. Microbiol. 41:435–464.PubMedCrossRefGoogle Scholar
  71. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and James, G., 1994, Biofilms: The customized microniche, J. Bacteriol. 176:2137–2142.PubMedGoogle Scholar
  72. Cowan, M. M., Warren, T. M., and Fletcher, M., 1991, Mixed-species colonization of solid surfaces in laboratory biofilms, Biofouling 3:23–34.CrossRefGoogle Scholar
  73. Dagostino, L., Goodman, A. E., and Marshall, K. C., 1991, Physiological responses induced in bacteria adhering to surfaces, Biofouling 4:113–119.CrossRefGoogle Scholar
  74. Davies, D. G., Chakrabarty, A. M., and Geesey, G. G., 1993, Exopolysaccharide production in biofilms: Substratum activation of alginate gene expression by Pseudomonas aeruginosa, Appl. Environ. Microbiol. 59:1181–1186.PubMedGoogle Scholar
  75. Dawson, M. P., Humphrey, B. A., and Marshall, K. C., 1981, Adhesion: A tactic in the survival strategy of a marine vibrio during starvation, Curr. Microbiol. 6:195–201.CrossRefGoogle Scholar
  76. Day, M. J., 1987, The biology of plasmids, Sci. Prog. 71:203–220.PubMedGoogle Scholar
  77. Decho, A. W., 1990, Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes, Oceanogr. Mar. Biol. Annu. Rev. 28:73–153.Google Scholar
  78. Decho, A. W., and Lopez, G. R., 1993, Exopolymer microenvironments of microbial flora: Multiple and interactive effects on trophic relationships, Limnol. Oceanogr. 38:1633–1645.CrossRefGoogle Scholar
  79. DeFlaun, M. F., Tanzer, A. S., McAteer, A. L., Marshall, B., and Levy, S. B., 1990, Development of an adhesion assay and characterization of an adhesion-deficient mutant of Pseudomonas fluorescens, Appl. Environ. Microbiol. 56:112–119.PubMedGoogle Scholar
  80. Delaquis, P. J., Caldwell, D. E., Lawrence, J. R., and McCurdy, A. R., 1989, Detachment of Pseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress, Microb. Ecol. 18:199–210.CrossRefGoogle Scholar
  81. Delaquis, P. J., 1990, Colonization of Model and Meat Surfaces by Pseudomonas fragi and Pseudomonas fluorescens, University of Saskatchewan, Saskatoon, Canada, Ph.D. thesis.Google Scholar
  82. Dempsey, M. J., 1981, Marine bacterial fouling: A scanning electron microscope study, Mar. Biol. 61:305–315.CrossRefGoogle Scholar
  83. Deretic, V., Dikshit, R., Konyecsni, W. M., Chakrabarty, A. M., and Misra, T. K., 1989, The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes, J. Bacteriol. 171:1278–1283.PubMedGoogle Scholar
  84. De Weger, L. D., Van Der Vlugt, C. I. M., Wijfjes, A. H. M., Bakker, P. A. H. M., Schippers, B., and Lugtenberg, B., 1987, Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots, J. Bacteriol. 169:2769–2773.PubMedGoogle Scholar
  85. Dexter, S. C., 1979, Influence of substratum critical surface tension on bacterial adhesion—in situ studies, J. Colloid Interface Sci. 70:346–353.CrossRefGoogle Scholar
  86. Dexter, S. C., Sullivan Jr., J. D., Williams, J., and Watson, S. W., 1975, Influence of substrate wetability on the attachment of marine bacteria to various surfaces, Appl. Microbiol. 30:298–308.PubMedGoogle Scholar
  87. Dow, C. S., Westmacott, D., and Whittenbury, R., 1976, Ultrastructure of budding and prosthecate bacteria, in: Microbial Ultrastructure (R. Fuller and D. W. Loverlock, eds.), Academic Press, New York, pp. 187–221.Google Scholar
  88. Dudman, W. F., 1977, The role of surface polysaccharides in natural environments, in: Surface Carbohydrates of the Prokaryotic Cells (I. W. Sutherland, ed.), Academic Press, New York, pp. 357–414.Google Scholar
  89. Ellwood, D. C., Keevil, C. W., Marsh, P. D., Brown, C. M., and Wardell, J. N., 1982, Surface-associated growth, Phil. Trans. R. Soc. Lond. B 297:517–532.CrossRefGoogle Scholar
  90. Eng, R. H. K., Padberg, F. T, Smith, S. M., Tan, E. N., and Cherubin, C. E., 1991, Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria, Antimicrob. Agents Chemother. 35:1824–1828.PubMedGoogle Scholar
  91. Evans, D. J., Brown, M. R. W., Allison, D. G., and Gilbert, P., 1990, Susceptibility of bacterial biofilms to tobramycin: Role of specific growth rate and phase in division cycle, J. Antimicrob. Chemother. 25:585–591.PubMedCrossRefGoogle Scholar
  92. Fenchel, T., and Jorgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, in: Advances in Microbial Ecology, Vol. 1 (M. Alexander, ed.), Plenum Press, New York, pp. 3–37.Google Scholar
  93. Fernandez-Astorga, A., Muela, A., Cisterna, R., Iriberri, J., and Barcina, I., 1992, Biotic and abiotic factors affecting plasmid transfer in Escherichia coli strains, Appl. Environ. Microbiol. 58:392–398.PubMedGoogle Scholar
  94. Ferris, F. G., Fyfe, W. S., Witten, T., Schultze, S., and Beveridge, T. J., 1989, Effect of mineral substrate hardness on the population density of epilithic microorganisms in two Ontario rivers, Can. J. Microbiol. 35:744–747.CrossRefGoogle Scholar
  95. Fletcher, M., 1977, The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene, Can. J. Microbiol. 23:1–6.CrossRefGoogle Scholar
  96. Fletcher, M., 1984, Comparative physiology of attached and free-living bacteria, in: Microbial Adhesion and Aggregation (K. C. Marshall, ed.), Springer Verlag, New York, pp. 223–232.CrossRefGoogle Scholar
  97. Fletcher, M., 1988, Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance, Abstracts of the 88th Annual Meeting of the American Society for Microbiology, Miami Beach, Fla.Google Scholar
  98. Fletcher, M., 1993, Physicochemical aspects of surface colonization, in: Trends in Microbial Ecology (R. Guerrero and C. Pedrós-Alío, eds.), Spanish Society for Microbiology, Barcelona, Spain, pp. 109–112.Google Scholar
  99. Fletcher, M., and Loeb, G. I., 1979, Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces, Appl. Environ. Microbiol. 37:67–72.PubMedGoogle Scholar
  100. Fletcher, M., and Marshall, K. C., 1982, Bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment, Appl. Environ. Microbiol. 44:184–192.PubMedGoogle Scholar
  101. Fogarty, A. M., and Tuovinen, O. H., 1991, Microbiological degradation of pesticides in yard waste composting, Microbiol. Rev. 55:225–233.PubMedGoogle Scholar
  102. Fredrickson, A. G., 1977, Behavior of mixed cultures of microorganisms, Annu. Rev. Microbiol. 33:63–87.CrossRefGoogle Scholar
  103. Fry, J. C., and Day, M. J. (eds.), 1990, Bacterial Genetics in Natural Environments, Chapman and Hall, London, England.Google Scholar
  104. Fulthorpe, R. R., and Wyndham, R. C., 1991, Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem, Appl. Environ. Microbiol. 57:1546–1553.PubMedGoogle Scholar
  105. Fulthorpe, R. R., and Wyndham, R. C., 1992, Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline and 2,4-dichloro-phenoxyacetic acid in a freshwater ecosystem, Appl. Environ. Microbiol. 58:314–325.PubMedGoogle Scholar
  106. Furukawa, K., Taira, K., and Hayase, N., 1989, Molecular organization of chromosomal genes coding for biphenyl/PCB catabolism in various soil bacteria, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita and A. Uchida, eds.), Japan Scientific Society Press, Tokyo, pp. 611–616.Google Scholar
  107. Geesey, G. G., and Costerton, J. W., 1979, Microbiology of a northern river: Bacterial distribution and relationship to suspended sediment and organic carbon, Can. J. Microbiol. 25:1058–1062.PubMedCrossRefGoogle Scholar
  108. Geesey, G. G., and Morita, R. Y., 1979, Capture of arginine at low concentrations by a marine psychrophilic bacterium, Appl. Environ. Microbiol. 38:1092–1097.PubMedGoogle Scholar
  109. Geesey, G. G., and White, D. C., 1990, Determination of bacterial growth and activity at solid-liquid interfaces, Annu. Rev. Microbiol. 44:579–602.PubMedCrossRefGoogle Scholar
  110. Geesey, G. G., Richardson, W. T., Yoemans, H. G., Irvin, R. T., and Costerton, J. W., 1977, Microscopic examination of natural bacterial populations from an alpine stream, Can. J. Microbiol. 23:1733–1736.PubMedCrossRefGoogle Scholar
  111. Gilbert, P., Collier, P. J., and Brown, M. R. W., 1990, Influence of growth rate on susceptibility to antimicrobial agents: Biofilms, cell cycle, dormancy, and stringent response, Antimicrob. Agents Chemother. 34:1856–1868.Google Scholar
  112. Giwercman, B., Jensen, E. T., Hoiby, N., Kharazmi, A., and Costerton, J. W., 1991, Induction of β-lactamase production in Pseudomonas aeruginosa biofilms, Antimicrob. Agents Chemother. 35:1008–1010.PubMedGoogle Scholar
  113. Godwin, S. L., Fletcher, M., and Burchard, R. P., 1989, Interference reflection microscopic study of sites of association between gliding bacteria and glass substrata, J. Bacteriol. 171:4589–4594.PubMedGoogle Scholar
  114. Goldstein, R. M., Mallory, L. M., and Alexander, M., 1985, Reasons for possible failure of inoculation to enhance biodegradation, Appl. Environ. Microbiol. 50:977–983.PubMedGoogle Scholar
  115. Goodman, A. E., Angles, M. L., and Marshall, K. C., 1993a, Genetic responses of bacteria in biofilms, in: Trends in Microbial Ecology (R. Guerrero and C. Pedrós-Alío, eds.), Spanish Society for Microbiology, Barcelona, Spain, pp. 119–122.Google Scholar
  116. Goodman, A. E., Hild, E., Marshall, K. C., and Hermansson, M., 1993b, Conjugative plasmid transfer between bacteria under simulated marine oligotrophic conditions, Appl. Environ. Microbiol. 59:1035–1040.PubMedGoogle Scholar
  117. Guckert, J. B., Hood, M. A., and White, D. C., 1986, Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae; increases in the trans/cis ratio and proportions of cyclopropyl fatty acids, Appl. Environ. Microbiol. 52:794–801.PubMedGoogle Scholar
  118. Güde, H., 1985, Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems, Microb. Ecol. 11:193–204.CrossRefGoogle Scholar
  119. Guentzel, M. N., and Berry, L. J., 1983, Motility as a virulence factor for Vibrio cholerae, Infect. Immun. 11:890–897.Google Scholar
  120. Gutierrex, N. A., and Maddox, I. S., 1987, Role of chemotaxis in solvent production by Clostridium acetobutylicum, Appl. Environ. Microbiol. 53:1924–1927.Google Scholar
  121. Haefele, D. M., and Lindow, S. E., 1987, Flagellar motility confers epiphytic fitness advantages upon Pseudomonas syringae, Appl. Environ. Microbiol. 53:2528–2533.PubMedGoogle Scholar
  122. Häggblom, M., 1990, Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds, J. Basic Microbiol. 30:115–141.PubMedCrossRefGoogle Scholar
  123. Hamilton, W. A., 1987, Biofilms: Microbial interactions and metabolic activities, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, England, pp. 361–385.Google Scholar
  124. Hamilton, W. A., and Characklis, W. G., 1989, Relative activities of cells in suspension and in biofilms, in: Structure and Function of Biofilms (W. G. Characklis and P. A. Wilderer, eds.), Wiley and Sons, Toronto, Canada, pp. 199–219.Google Scholar
  125. Handley, P. S., Hesketh, L. M., and Moumena, R. A., 1991, Charged and hydrophobic groups are localized in the short and long tuft fibrils on Streptococcus sanguis strains, Biofouling 4:105–111.CrossRefGoogle Scholar
  126. Hansen, J. B., Doubet, R. S., and Ram, J., 1984, Alginase enzyme production by Bacillus circulans, Appl. Environ. Microbiol. 47:704–709.PubMedGoogle Scholar
  127. Helmsetter, C. E., 1969, Sequence of bacterial reproduction, Annu. Rev. Microbiol. 23:223–238.CrossRefGoogle Scholar
  128. Henningson, P. J., and Gudmestad, N. C., 1992, Comparison of exopolysaccharides from mucoid and nonmucoid strains of Clavibacter michiganensis subspecies sepedonicus, Can. J. Microbiol. 39:291–296.CrossRefGoogle Scholar
  129. Henrici, A. T., and Johnson, D. E., 1935, Studies of freshwater bacteria II. Stalked bacteria, a new order of Schizomycetes, J. Bacteriol. 30:61–93.PubMedGoogle Scholar
  130. Hermansson, M., and Marshall, K. C., 1985, Utilization of surface localized substrate by non-adhesive marine bacteria, Microb. Ecol. 11:91–105.CrossRefGoogle Scholar
  131. Hirsch, P., 1968, Biology of budding bacteria, Arch. Mikrobiol. 60:201–216.PubMedCrossRefGoogle Scholar
  132. Hirsch, P., 1974, Budding bacteria, Annu. Rev. Microbiol. 28:391–433.PubMedCrossRefGoogle Scholar
  133. Hirsch, P., 1984, Microcolony formation and consortia, in: Microbial Adhesion and Aggregation (K. C. Marshall, ed.), Springer-Verlag, New York, pp. 373–393.CrossRefGoogle Scholar
  134. Hirsch, P., and Rheinheimer, G. 1968, Biology of budding bacteria. V. Budding bacteria in aquatic habitats: Occurrence, enrichment and isolation, Arch. Mikrobiol. 62:289–306.PubMedCrossRefGoogle Scholar
  135. Ho, C. S., 1986, An understanding of the forces in the adhesion of micro-organisms to surfaces, Proc. Biochem. 21:148–152.Google Scholar
  136. Hood, M. A., Guchert, J. B., White, D. C., and Deck, F., 1986, Effect of nutrient deprivation on lipid, carbohydrate, RNA, DNA, and protein levels in Vibrio cholerae, Appl. Environ. Microbiol. 52:788–793.PubMedGoogle Scholar
  137. Howell, J. A., and Atkinson, B., 1976, Sloughing of microbial film in trickling filters, Water Res. 10:307–315.CrossRefGoogle Scholar
  138. Huang, T.-C., Chang, M.-C., and Alexander, M., 1981, Effect of protozoa on bacterial degradation of an aromatic compound, Appl. Environ. Microbiol. 41:229–232.PubMedGoogle Scholar
  139. Hunt, H. W., Coleman, D. C., Cole, C. V., Ingham, R. E., Elliott, E. T., and Woods, L. E., 1984, Simulation model of a food web with bacteria, amoebae, and nematodes in soil, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), American Society for Microbiology Press, Washington, D.C., pp. 346–352.Google Scholar
  140. Isaacson, R. E., Nagy, B., and Moon, H. W., 1977, Colonization of porcine small intestine by Escherichia coli: Colonization and adhesion factors of pig enteropathogens that lack K88, J. Infect. Dis. 135:531–538.PubMedCrossRefGoogle Scholar
  141. James, G. A., Caldwell, D. E., and Costerton, J. W., 1993, Spatial relationships between bacterial species within biofilms, Abstract, CSM/SIM annual meeting, Toronto, Canada.Google Scholar
  142. James, G. A., Korber, D. R., Caldwell, D. E., and Costerton, J. W., 1995, Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J. Bacteriol. 177:905–915.Google Scholar
  143. Jannasch, H. W., 1967, Growth of marine bacteria at limiting concentrations of organic carbon in seawater, Limnol. Oceanogr. 12:264–271.CrossRefGoogle Scholar
  144. Jenneman, G. E., McInerney, M. J., and Knapp, R. M., 1985, Microbial penetration through nutrient-saturated Berea sandstone, Appl. Environ. Microbiol. 50:383–391.PubMedGoogle Scholar
  145. Jensen, R. H., and Woolfolk, C. A., 1985, Formation of filaments by Pseudomonas putida, Appl. Environ. Microbiol. 50:364–372.PubMedGoogle Scholar
  146. Jones, G. W., Baines, L., and Genthner, F. J., 1991, Heterotrophic bacteria of the freshwater neuston and their ability to act as plasmid recipients under nutrient deprived conditions, Microb. Ecol. 22:15–25.CrossRefGoogle Scholar
  147. Kalos, M., and Zissler, J. F., 1990, Defects in contact-stimulated gliding during aggregation by Myxococcus xanthus, J. Bacteriol. 172:6476–6493.PubMedGoogle Scholar
  148. Keevil, C. W., and Walker, J. T., 1992, Nomarski DIC microscopy and image analysis of biofilms, Binary 4:93–95.Google Scholar
  149. Kefford, B., Kjelleberg, S., and Marshall, K. C., 1982, Bacterial scavenging: Utilization of fatty acids localized at a solid-liquid interface, Arch. Microbiol. 133:257–260.CrossRefGoogle Scholar
  150. Kelly, F. X., Dapsis, K. J., and Lauffenburger, D. A., 1988, Effect of bacterial chemotaxis on dynamics of microbial competition, Microb. Ecol. 16:115–131.CrossRefGoogle Scholar
  151. Kenne, L., and Lindberg, B., 1983, Bacterial polysaccharides, in: The Polysaccharides (G. O. Aspinall, ed.), Academic Press, New York, pp. 287–363.Google Scholar
  152. Kim, S. K., and Kaiser, D., 1990, C-factor; a cell-cell signalling protein required for fruiting body morphogenesis of M. xanthus, Cell 61:19–26.PubMedCrossRefGoogle Scholar
  153. Kjelleberg, S., 1980, Effects of interfaces on survival mechanisms of copiotrophic bacteria in low-nutrient environments, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, England, pp. 151–159.Google Scholar
  154. Kjelleberg, S., 1984, Effects of interfaces on survival mechanisms of copiotrophic bacteria in low-nutrient habitats, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), American Society for Microbiology Press, Washington, D.C., pp. 151–159.Google Scholar
  155. Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1982, The effect of interfaces on small, starved marine bacteria, Appl. Environ. Microbiol. 43:1166–1172.PubMedGoogle Scholar
  156. Kjelleberg, S., Hermansson, M., Marden, P., and Jones, G. W., 1987, The transient phase between growth and non-growth of heterotrophic bacteria with emphasis on the marine environment, Annu. Rev. Microbiol. 41:25–49.PubMedCrossRefGoogle Scholar
  157. Kjelleberg, S., Ostling, J., Holmquist, L., Flardh, K., Svenblad, B., Jouper-Jann, A., Weichart, D., and Albertson, N., 1993, Starvation and recovery of Vibrio, in: Trends in Microbial Ecology (R. Guerrero and C. Pedrós-Alío, eds.), Spanish Society for Microbiology, Barcelona, Spain, pp. 169–174.Google Scholar
  158. Knight, E. V., Novick, N. J., Kaplan, D. L., and Meeks, J. R., 1990, Biodegradation of 2-furaldehyde under nitrate-reducing and methanogenic conditions, Environ. Toxicol. Chem. 9:725–730.CrossRefGoogle Scholar
  159. Koch, A. L., 1991, Diffusion: The crucial process in many aspects of the biology of bacteria, in: Advances in Microbial Ecology, Vol. 11 (K. C. Marshall, ed.), Plenum Press, New York, pp. 37–70.Google Scholar
  160. Kolenbrander, P. E., 1989, Surface recognition among oral bacteria: Multigeneric coaggregations and their mediators, Crit. Rev. Microbiol. 17:137–159.PubMedCrossRefGoogle Scholar
  161. Kolenbrander, P. E., 1993, Coaggregation of human oral bacteria: Potential role in the accretion of dental plaque, in: Microbial Cell Envelopes: Interactions and Biofilms (L. B. Quesnel, P. Gilbert, and P. S. Handley, eds.), Blackwell Scientific, Oxford, England, pp. 79S–86S.Google Scholar
  162. Kolenbrander, P. E., and London, J., 1992, Ecological significance of coaggregation among oral bacteria, in: Advances in Microbial Ecology, Vol. 12 (K. C. Marshall, ed.), Plenum Press, New York, pp. 183–217.CrossRefGoogle Scholar
  163. Komiyama, K., Habbick, B. F., and Gibbons, R. J., 1987, Interbacterial adhesion between Pseudomonas aeruginosa and indigenous oral bacteria isolated from patients with cystic fibrosis, Can. J. Microbiol. 33:27–32.PubMedCrossRefGoogle Scholar
  164. Korber, D. R., Lawrence, J. R., Sutton, B., and Caldwell, D. E., 1989, The effect of laminar flow on the kinetics of surface recolonization by mot+ and mot Pseudomonas fluorescens, Microb. Ecol. 18:1–19.CrossRefGoogle Scholar
  165. Korber, D. R., Lawrence, J. R., Zhang, L., and Caldwell, D. E., 1990, Effect of gravity on bacterial deposition and orientation in laminar flow environments, Biofouling 2:335–350.CrossRefGoogle Scholar
  166. Korber, D. R., Lawrence, J. R., Hendry, M. J., and Caldwell, D. E., 1993, Analysis of spatial variability within mot+ and mot Pseudomonas fluorescens biofilms using representative elements, Biofouling 7:339–358.CrossRefGoogle Scholar
  167. Korber, D. R., James, G. A., and Costerton, J. W., 1994a, Evaluation of fleroxacin activity against established Pseudomonas fluorescens biofilms, Appl. Environ. Microbiol. 60:1663–1669.PubMedGoogle Scholar
  168. Korber, D. R., Lawrence, J. R., and Caldwell, D. E., 1994b, Effect of motility on surface colonization and reproductive success of Pseudomonas fluorescens in dual-dilution continuous culture and batch culture systems. Appl. Environ. Microbiol. 60:1421–1429.PubMedGoogle Scholar
  169. Korber, D. R., Hanson, K. G., Lawrence, J. R., Caldwell, D. E., and Costerton, J. W., 1994c, The effect of environmental laminar flow velocities on the architecture of Pseudomonas fluorescens biofilms, in: Abstracts of the ASM 94th Annual Meeting (Las Vegas, Nevada), American Society of Microbiology.Google Scholar
  170. Kröckel, L., and Focht, D. D., 1987, Construction of chlorobenzene-utilizing recombinants by progenitive manifestation or a rare event, Appl. Environ. Microbiol. 53:2470–2475.PubMedGoogle Scholar
  171. La Motta, E. J., 1976, Internal diffusion and reaction in biological films, Environ. Sci. Technol. 10:765–769.CrossRefGoogle Scholar
  172. Lang, E., Viedt, H., Egestorff, J., and Hanert, H. H., 1992, Reaction of the soil microflora after contamination with chlorinated aromatic compounds and HCH, FEMS Microbiol. Ecol. 86:275–282.CrossRefGoogle Scholar
  173. Lauffenburger, D., Aris, R., and Keller, K. H., 1981, Effects of random motility on growth of bacterial populations, Microb. Ecol. 7:207–227.CrossRefGoogle Scholar
  174. Lauffenburger, D., Grady, M., and Keller, K. H., 1984, An hypothesis for approaching swarms of myxobacteria, J. Theoret. Biol. 110:257–274.CrossRefGoogle Scholar
  175. Lawrence, J. R., and Caldwell, D. E., 1987, Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol. 14:15–27.CrossRefGoogle Scholar
  176. Lawrence, J. R., and Korber, D. R., 1993, Aspects of microbial surface colonization behavior, in: Trends in Microbial Ecology (R. Guerrero and C. Pedrós-Alío, eds.), Spanish Society for Microbiology, Barcelona, Spain, pp. 113–118.Google Scholar
  177. Lawrence, J. R., Delaquis, P. J., Korber, D. R., and Caldwell, D. E., 1987, Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol. 14:1–14.CrossRefGoogle Scholar
  178. Lawrence, J. R., Korber, D. R., and Caldwell, D. E., 1989a, Computer-enhanced darkfield microscopy for the quantitative analysis of bacterial growth and behavior on surfaces, J. Microbiol. Methods 10:123–138.CrossRefGoogle Scholar
  179. Lawrence, J. R., Malone, J. A., Korber, D. R., and Caldwell, D. E., 1989b, Computer image enhancement to increase depth of field in phase contrast microscopy, Binary 1:181–185.Google Scholar
  180. Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., and Caldwell, D. E., 1991, Optical sectioning of microbial biofilms, J. Bacteriol. 173:6558–6567.PubMedGoogle Scholar
  181. Lawrence, J. R., Korber, D. R., and Caldwell, D. E., 1992, Behavioral analysis of Vibrio parahaemolyticus variants in high-and low-viscosity microenvironments by use of digital image processing, J. Bacteriol. 174:5732–5739.PubMedGoogle Scholar
  182. Lawrence, J. R., Wolfaardt, G. M., and Snyder, R. A., 1993, Influence of microbial trophic interactions on the architecture and exopolymer chemistry of a biofilm community, Abstract, Canadian Society for Microbiologists and Society for Industrial Microbiology Meeting, Toronto, Ontario.Google Scholar
  183. Lawrence, J. R., Wolfaardt, G. M., and Korber, D. R., 1994, Determination of diffusion coefficients in biofilms using confocal laser microscopy, Appl. Environ. Microbiol. 60:1166–1173.PubMedGoogle Scholar
  184. Lee, C. A., and Falkow, S., 1990, The ability of salmonella to enter mammalian cells is affected by bacterial growth state, Proc. Natl. Acad. Sci. USA 87:4304–4308.PubMedCrossRefGoogle Scholar
  185. Lee, M. D., and Ward, C. H., 1985, Biological methods for the restoration of contaminated aquifers, Environ. Toxicol. Chem. 4:743–750.CrossRefGoogle Scholar
  186. Leech, R., and Hefford, R. J. W., 1980, The observation of bacterial deposition from a flowing suspension, in: Microbial Adhesion to Surfaces (R. C. W. Berkley, J. M. Lynch, J. Melling, P. R. Rutter, and D. Vincent, eds.), Ellis Horwood, Chichester, England, pp. 544–545.Google Scholar
  187. Lens, P. N. L., De Beer, D., Cronenberg, C. C. H., Houwen, F. P., Ottengraf, S. P. P., and Verstraete, W. H., 1993, Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles, Appl. Environ. Microbiol. 59:3803–3815.PubMedGoogle Scholar
  188. Levy, S. B., and Marshall, B. M., 1988, Genetic transfer in the natural environment, in: Release of Genetically Engineered Microorganisms (M. Sussman, C. H. Collins, F. A. Skinner, and D. E. Stewart-Tull, eds.), Academic Press, New York, pp. 61–76.Google Scholar
  189. Levy, S. B., and Miller, R. V. (eds.), 1989, Gene Transfer in the Environment, McGraw-Hill, New York.Google Scholar
  190. Lewandowski, Z., Lee, W. C., Characklis, W. G., and Little, B., 1989, Dissolved oxygen and pH microelectrode measurements at water immersed metal surfaces, Corrosion 45:92–98.CrossRefGoogle Scholar
  191. Lewandowski, Z., Walser, G., and Characklis, W. G., 1991, Reaction kinetics in biofilms, Biotechnol. Bioeng. 38:877–882.PubMedCrossRefGoogle Scholar
  192. Lewandowski, Z., Altobelli, S. A., and Fukushima, E., 1993, NMR and microelectrode studies of hydrodynamics and kinetics in biofilms, Biotechnol. Prog. 9:40–45.CrossRefGoogle Scholar
  193. Lewis, D. H., 1985, Symbiosis and mutualism: Crisp concepts and soggy semantics, in: The Biology of Mutualism (D. H. Boucher, ed.), Oxford University Press, New York, pp. 29–39.Google Scholar
  194. Lewis, D. L., and Gattie, D. K., 1991, The ecology of quiescent microbes, Am. Soc. Microbiol. News 57:27–32.Google Scholar
  195. Lock, M. A., Wallace, R. R., Costerton, J. W., Ventullo, R. M., and Charlton, S. E., 1984, River epilithion: Toward a structural-functional model, Oikos 42:10–22.CrossRefGoogle Scholar
  196. Loeb, G. I., 1980, Measurement of microbial marine fouling films by light section microscopy, Mar. Technol. Soc. J. 14:17–23.Google Scholar
  197. Loeb, G. I., and Neihof, R. A., 1975, Marine conditioning films, Adv. Chem. Ser. 145:319–335.CrossRefGoogle Scholar
  198. Mack, W. N., Mack, J. P., and Ackerson, A. O., 1975, Microbial film development in a trickling filter, Microb. Ecol. 2:215–226.CrossRefGoogle Scholar
  199. Madsen, E. L., 1991, Determining in situ biodegradation, Environ. Sci. Technol. 25:1663–1673.CrossRefGoogle Scholar
  200. MacLeod, F. A., Guiot, S. R., and Costerton, J. W., 1990, Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed reactor, Appl. Environ. Microbiol. 56:1598–1607.PubMedGoogle Scholar
  201. Malone, J. A., 1987, Colonization of Surface Microenvironments by Rhizobium spp., University of Saskatchewan, Saskatoon, Canada, M.Sc. thesis.Google Scholar
  202. Marmur, A., and Ruckenstein, E., 1986, Gravity and cell adhesion, J. Colloid Interface Sci. 114:261–266.CrossRefGoogle Scholar
  203. Marshall, B., and Levy, S. B., 1990, Gene exchange in the natural environment, in: Advances in Biotechnology (E. Heseltine, ed.), AB Boktryck HBG, Stockholm, pp. 131–143.Google Scholar
  204. Marshall, K. C., 1988, Adhesion and growth of bacteria at surfaces in oligotrophic habitats, Can. J. Microbiol. 34:503–506.CrossRefGoogle Scholar
  205. Marshall, K. C., 1989, Growth of bacteria on surface-bound substrates: Significance on biofilm development, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Scientific Society Press, Tokyo, pp. 146–150.Google Scholar
  206. Marshall, K. C., 1993, Microbial ecology: Whither goest thou? in: Trends in Microbial Ecology (R. Guerrero and C. Pedrós-Alío, eds.), Spanish Society for Microbiology, Barcelona, Spain, pp. 5–8.Google Scholar
  207. Marshall, K. C., and Cruickshank, R. H., 1973, Cell surface hydrophobicity and the orientation of certain bacteria at interfaces, Arch. Mikrobiol. 91:29–40.PubMedCrossRefGoogle Scholar
  208. Marshall, K. C., Stout, R., and Mitchell, R., 1971, Mechanisms of the initial events in the sorption of marine bacteria to solid surfaces, J. Gen. Microbiol. 68:337–348.Google Scholar
  209. Marshall, P. A., Loeb, G. I., Cowan, M. M., and Fletcher, M., 1989, Response of microbial adhesives and biofilm matrix polymers to chemical treatments as determined by interference reflection microscopy and light section microscopy, Appl. Environ. Microbiol. 55:2827–2831.PubMedGoogle Scholar
  210. Marszalek, D. S., Gerchakov, S. M., and Udey, L. R., 1979, Influence of substrate composition on marine microfouling, Appl. Environ. Microbiol. 38:987–995.PubMedGoogle Scholar
  211. Matson, J. V., and Characklis, W. G., 1976, Diffusion into microbial aggregates, Water Res. 10:877–881.CrossRefGoogle Scholar
  212. McCarter, L. L., and Silverman, M., 1989, Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus, J. Bacteriol. 171:731–736.PubMedGoogle Scholar
  213. McCarter, L. L., Hilmen, M., and Silverman, M., 1988, Flagellar dynamometer controls swarmer cell differentiation of Vibrio parahaemolyticus, Cell 54:345–351.PubMedCrossRefGoogle Scholar
  214. McCarter, L. L., Showalter, R. E., and Silverman, M. R., 1992, Genetic analysis of surface sensing in Vibrio parahaemolyticus, Biofouling 5:163–175.CrossRefGoogle Scholar
  215. McCormick, P. V., and Cairns, J. C., 1991, Limited versus unlimited membership in microbial communities: Evaluation and experimental tests of some paradigms, Hydrobiologia 21:77–91.CrossRefGoogle Scholar
  216. McCuster, V. W., Skipper, H. D., Zublena, J. P., and Gooden, D. T., 1988, Biodegradation of carbamothioates in butylate-history soils, Weed Sci. 36:818–823.Google Scholar
  217. McEldowney, S., and Fletcher, M., 1988, Effect of pH, temperature, and growth conditions in the adhesion of a gliding bacterium and three nongliding bacteria to polystyrene, Microb. Ecol. 16:183–195.CrossRefGoogle Scholar
  218. McLean, R. J. C., Lawrence, J. R., Korber, D. R., and Caldwell, D. E., 1991, Proteus mirabilis biofilm protection against struvite crystal dissolution and its implications in struvite urolithiasis, J. Urol. 146:1138–1142.PubMedGoogle Scholar
  219. McSweegan, E., and Walker, R. I., 1986, Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates, Infect. Immun. 53:141–148.PubMedGoogle Scholar
  220. Meadows, P. S., 1971, The attachment of bacteria to solid surfaces, Arch. Mikrobiol. 85:374–381.CrossRefGoogle Scholar
  221. Merker, R. I., and Smit, J., 1988, Characterization of the adhesive holdfast of marine and freshwater Caulobacters, Appl. Environ. Microbiol. 54:2078–2085.PubMedGoogle Scholar
  222. Mills, A. L., and Maubrey, R., 1981, Effect of mineral composition on bacterial attachment to submerged rock surfaces, Microb. Ecol. 7:315–322.CrossRefGoogle Scholar
  223. Mittelman, M. W., and Geesey, G. G., 1985, Copper-binding characteristics of expolymers from a freshwater-sediment bacterium, Appl. Environ. Microbiol. 49:846–851.PubMedGoogle Scholar
  224. Mittelman, M. W., Nivens, D. E., Low, C., and White, D. C., 1990, Differential adhesion, activity, and carbohydrate: protein ratios of Pseudomonas atlantica monocultures attaching to stainless steel in a linear shear gradient, Microb. Ecol. 19:269–278.CrossRefGoogle Scholar
  225. Moore, R. L., 1981, The biology of Hyphomicrobium and other prosthecate, budding bacteria, Annu. Rev. Microbiol. 35:567–594.PubMedCrossRefGoogle Scholar
  226. Moriarty, D. J. W., 1982, Feeding of the holothurians on bacteria and organic matter, Aust. J. Mar. Freshwater Res. 33:255–263.CrossRefGoogle Scholar
  227. Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, Adv. Microb. Ecol. 6:171–198.CrossRefGoogle Scholar
  228. Morita, R. Y., 1986, Starvation-survival: The hormonal mode of most bacteria in the ocean, in: Proceedings of the IVISME (F. Mequsar and M. Gantar, eds.), Slovene Society for Microbiology, Ljubljana, Yugoslavia, pp. 242–248.Google Scholar
  229. Morris, E. J., and McBride, B. C., 1984, Adherence of Streptococcus sanguis to saliva-coated hydroxyapatite: Evidence for two binding sites, Infect. Immun. 43:656–663.PubMedGoogle Scholar
  230. Mueller, J. G., Skipper, H. D., and Kline, E. L., 1988, Loss of butyrate-utilizing ability by a Flavobacterium, Pest. Biochem. Phys. 32:189–196.CrossRefGoogle Scholar
  231. Nalewajko, C., Dunstall, T. G., and Shear, H., 1976, Kinetics of extracellular release in axenic algae and in mixed algal-bacterial cultures: Significance in estimation of total (gross) phytoplankton excretion rates, J. Phycol. 12:1–5.Google Scholar
  232. Nalewajko, C., Lee, K., and Fay, P., 1980, Significance of algal extracellular products to bacteria in lakes and in cultures, Microb. Ecol. 6:199–207.CrossRefGoogle Scholar
  233. Namkung, E., and Rittman, B. E., 1987, Modelling substrate removal by biofilms, Biotech. Bioeng. 29:269–278.CrossRefGoogle Scholar
  234. Nealson, K. H., 1977, Autoinduction of bacterial luciferase: Occurrence, mechanism and significance, Arch. Microbiol. 112:73–79.PubMedCrossRefGoogle Scholar
  235. Nelson, C. H., Robinson, J. A., and Characklis, W. A., 1985, Bacterial adsorption to smooth surfaces: Rate, extent, and spatial pattern, Biotech. Bioeng. 27:1662–1667.CrossRefGoogle Scholar
  236. Neu, T. R., and Marshall, K. C., 1991, Microbial “footprints”—a new approach to adhesive polymers, Biofouling 3:101–112.CrossRefGoogle Scholar
  237. Notermans, S., Dormans, J. A. M. A., and Mead, G. C., 1991, Contribution of surface attachment to the establishment of micro-organisms in food processing plants: A review, Biofouling 5:21–36.CrossRefGoogle Scholar
  238. Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32:617–622.PubMedGoogle Scholar
  239. Novitsky, J. A., and Morita, R. Y., 1977, Survival of a psychrophilic marine vibrio under long-term nutrient starvation, Appl. Environ. Microbiol. 33:635–641.PubMedGoogle Scholar
  240. Novitsky, J. A., and Morita, R. Y., 1978, Possible strategy for the survival of marine bacteria under starvation conditions, Mar. Biol. 48:289–295.CrossRefGoogle Scholar
  241. Nystrom, T., Flardh, K., and Kjelleberg, S., 1990, Responses to multiple nutrient starvation in marine Vibrio sp. strain CCUG 15956, J. Bacteriol. 172:7085–7097.PubMedGoogle Scholar
  242. Obayashi, A. W., and Gaudy, A. F., Jr., 1973, Aerobic digestion of extracellular microbial polysaccharides, J. Water Pollut. Control Fed. 45:1584–1594.Google Scholar
  243. Ohmura, N., Kitamura, K., and Saiki, H., 1993, Selective adhesion of Thiobacillus ferrooxidans to pyrite, Appl. Environ. Microbiol. 59:4044–4050.PubMedGoogle Scholar
  244. Ophir, T., and Gutnick, D. L., 1994, A role for expolysaccharides in the protection of microorganisms from desiccation, Appl. Environ. Microbiol. 60:740–745.PubMedGoogle Scholar
  245. Ostling, J., Goodman, A. E., and Kjelleberg, S., 1991, Behaviour in IncP-1 plasmids and a miniMu transposon in a marine Vibrio sp.: Isolation of starvation inducible lac Operon fusions, FEMS Microbiol. Ecol. 86:83–96.CrossRefGoogle Scholar
  246. Paerl, H. W., 1980, Attachment of microorganisms to living and detrital surfaces in freshwater systems, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley and Sons, New York, pp. 375–402.Google Scholar
  247. Palenik, B., Block, J.-C., Burns, R. G., Characklis, W. G., Christensen, B. E., Ghiorse, W. C., Gristina, A. G., Morel, F. M. M., Nichols, W. W., Tuovinen, O. H., Tuschewitzki, G.-J., and Videls, H. A., 1989, Group report biofilms: Properties and processes, in: Structure and Function of Biofilms (W. G. Characklis and P. A. Wilderer, eds.), Wiley and Sons, Toronto, Canada, pp. 351–366.Google Scholar
  248. Parkes, R. J., and Senior, E., 1988, Multistage chemostats and other models for studying anoxic environments, in: Handbook of Laboratory Model Systems for Microbial Ecosystems (J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, Fla., pp. 51–71.Google Scholar
  249. Patel, J. J., and Gerson, T., 1974, Formation and utilization of carbon reserves by Rhizobium, Arch. Microbiol. 101:211–220.PubMedCrossRefGoogle Scholar
  250. Patrick, F. M., and Loutit, M., 1976, Passage of metals in influents, through bacteria to higher organisms, Water Res. 10:333–335.CrossRefGoogle Scholar
  251. Pedersen, K., 1982, Factors regulating microbial biofilm development in a system with slowly flowing seawater, Appl. Environ. Microbiol. 44:1196–1204.PubMedGoogle Scholar
  252. Poindexter, J. S., 1981, The caulobacters: Ubiquitous unusual bacteria, Microbiol. Rev. 45:123–179.PubMedGoogle Scholar
  253. Pothuluri, J. V., Moorman, T. B., Obenhuber, D. C., and Wauchope, R. D., 1990, Aerobic and anaerobic degradation of alachlor in samples from a surface-to-groundwater profile, J. Environ. Qual. 19:525–530.CrossRefGoogle Scholar
  254. Powell, M. S., and Slater, N. K. H., 1983, The deposition of bacterial cells from laminar flows onto solid surfaces, Biotechnol. Bioeng. 25:891–900.PubMedCrossRefGoogle Scholar
  255. Power, K., and Marshall, K. C., 1988, Cellular growth and reproduction of marine bacteria on surface-bound substrates, Biofouling 1:163–174.CrossRefGoogle Scholar
  256. Prosser, J. I., 1989, Modeling nutrient flux through biofilm communities, in: Structure and Function of Biofilms (W. G. Characklis and P. A. Wilderer, eds.), Wiley and Sons, Toronto, Canada, pp. 239–250.Google Scholar
  257. Rainey, P. B., Moxon, E. R., and Thompson, I. P., 1993, Intraclonal polymorphism in bacteria, in: Advances in Microbial Ecology, Vol. 13 (J. A. Jones, ed.), Plenum Press, New York, pp. 263–300.CrossRefGoogle Scholar
  258. Reanney, D. C., Gowland, P. C., and Slater, J. H., 1983, Genetic interactions among communities, in: Microbes in the Natural Environment (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press, Cambridge, England, pp. 379–421.Google Scholar
  259. Revsbech, N. P., 1989, Diffusion characteristics of microbial communities determined by use of oxygen microsensors, J. Microbiol. Methods 49:111–122.CrossRefGoogle Scholar
  260. Reynolds, P. J., Sharma, P., Jenneman, G. E., and McInerney, M. J., 1989, Mechanisms of microbial movement in subsurface materials, Appl. Environ. Microbiol. 55:2280–2286.PubMedGoogle Scholar
  261. Rittle, K. H., Helmstetter, C. E., Meyer, A. E., and Baier, R. E., 1990, Escherichia coli retention on solid surfaces as functions of substratum surface energy and cell growth phase, Biofouling 2:121–130.CrossRefGoogle Scholar
  262. Robinson, R. W., Akin, D. E., Nordstedt, R. A., Thomas, M. V., and Aldrich, H. C., 1984, Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors, Appl. Environ. Microbiol. 48:127–136.PubMedGoogle Scholar
  263. Rochelle, P. A., Fry, J. C., and Day, M. J., 1989, Plasmid transfer between Pseudomonas spp. within epilithic films in a rotating disc microcosm, FEMS Microbiol. Ecol. 62:127–136.CrossRefGoogle Scholar
  264. Rose, A. H., 1976, Chemical Microbiology: An Introduction to Microbial Physiology, Plenum Press, New York, pp. 295–299.Google Scholar
  265. Rosenberg, M., and Kjelleberg, S., 1986, Hydrophobic interactions: Role in bacterial adhesion, Adv. Microb. Ecol. 9:353–393.Google Scholar
  266. Roszak, D. B., and Colwell, R. R., 1987, Survival strategies of bacteria in the natural environment, Microbiol. Rev. 51:365–379.PubMedGoogle Scholar
  267. Rothmel, R. K., Haugland, R. A., Coco, W. M., Sangodkar, U. M. X., and Chakrabarty, A. M., 1989, Natural and directed evolution: Microbial degradation of synthetic chlorinated compounds, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Scientific Society Press, Tokyo, pp. 605–610.Google Scholar
  268. Rozgaj, R., and Glancer-Soljan, M., 1992, Total degradation of 6-aminonaphthalene-2-sulphonic acid by a mixed culture consisting of different bacterial genera, FEMS Microbiol. Ecol. 86:229–235.CrossRefGoogle Scholar
  269. Rudd, T., Sterritt, R. M., and Lester, J. N., 1983, Mass balance of heavy metal uptake by encapsulated cultures of Klebsiella aerogenes, Microb. Ecol. 9:261–272.CrossRefGoogle Scholar
  270. Rutter, P., and Leech, R., 1980, The deposition of Streptococcus sanguis NCTC 7868 from a flowing suspension, J. Gen. Microbiol. 120:301–307.PubMedGoogle Scholar
  271. Sanders, R. W., and Porter, K. G., 1986, Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion, Appl. Environ. Microbiol. 52:101–107.PubMedGoogle Scholar
  272. Sanders, W. M., 1966, Oxygen utilization by slime organisms in continuous-culture, J. Air Water Poll. 10:253–276.Google Scholar
  273. Schieffer, G. E., and Caldwell, D. E., 1982, Synergistic interaction between Anabaena and Zooglea spp. in carbon dioxide limited continuous cultures, Appl. Environ. Microbiol. 44:84–87.Google Scholar
  274. Schmidt, S. K., Smith, R., Sheker, D., Hess, T. F., Silverstein, J., and Radehaus, P. M., 1992, Interactions of bacteria and microflagellates in sequencing batch reactors exhibiting enhanced mineralization of toxic organic chemicals, Microb. Ecol. 23:127–142.CrossRefGoogle Scholar
  275. Semenov, A., and Staley, J. T., 1992, Ecology of the polyprosthecate bacteria, Adv. Microb. Ecol. 12:339–382.CrossRefGoogle Scholar
  276. Shapiro, J. A., 1991, Multicellular behavior of bacteria, Am. Soc. Microbiol. News 57:247–253.Google Scholar
  277. Shapiro, J. A., and Hsu, C., 1989, Escherichia coli K-12 cell-cell interactions seen by time-lapse video, J. Bacteriol. 171:5963–5974.PubMedGoogle Scholar
  278. Shen, C. F., Kosaric, N., and Blaszczyk, R., 1993, The effect of heavy metals (Ni, Co, and Fe) on anaerobic granules and their extracellular substance, Water Res. 27:25–33.CrossRefGoogle Scholar
  279. Sherr, E. B., 1988, Direct use of high molecular weight polysaccharide by heterotrophic flagellates, Nature 335:348–351.CrossRefGoogle Scholar
  280. Shimkets, L. J., 1990, Social and developmental biology of the myxobacteria, Microbiol. Rev. 54:473–501.PubMedGoogle Scholar
  281. Sibbald, M. J., and Albright, L. J., 1988, Aggregated and free bacteria as food sources for heterotrophic microflagellates, Appl. Environ. Microbiol. 54:613–616.PubMedGoogle Scholar
  282. Sjollema, J., and Busscher, H. J., 1989, Deposition of polystyrene particles in a parallel plate flow cell. 2. Pair distribution functions between deposited particles, Colloids Surfaces 47:337–352.CrossRefGoogle Scholar
  283. Sjollema, J., Busscher, H. J., and Weerkamp, A. H., 1988, Deposition of oral streptococci and polystyrene latices onto glass in a parallel plate flow cell, Biofouling 1:101–112.CrossRefGoogle Scholar
  284. Sjollema, J., Van der Mei, H. C., Uyen, H. M., and Busscher, H. J., 1990a, Direct observations of cooperative effects in oral streptococcal adhesion to glass by analysis of the spatial arrangement of adhering bacteria, FEMS Microbiol. Let. 69:263–270.CrossRefGoogle Scholar
  285. Sjollema, J., Van der Mei, H. C., Uyen, H. M. W., and Busscher, H. J., 1990b, The influence of collector and bacterial cell surface properties on the deposition of oral streptococci in a parallel plate flow cell, J. Adhes. Sci. Technol. 4:765–777.CrossRefGoogle Scholar
  286. Slater, J. H., 1980, Physiological and genetic implications of mixed population and microbial community growth, in: Microbiology—1980 (D. Schlessinger, ed.), American Society for Microbiology Press, Washington, D.C., pp. 314–316.Google Scholar
  287. Slater, J. H., 1985. Gene transfer in microbial communities, in: Engineered Organisms in the Environment (H. O. Halverson, D. Pramer, and M. Rogal, eds.) American Society for Microbiology Press, Washington, D.C., pp. 89–98.Google Scholar
  288. Slater, J. H., and Hartman, D. J., 1982, Microbial ecology in the laboratory: Experimental systems, in: Experimental Microbial Ecology (R. G. Burns and J. H. Slater, eds.), Blackwell Scientific Publications, Oxford, England, pp. 255–274.Google Scholar
  289. Slater, J. H., and Somerville, H. J., 1979, Microbial aspects of waste treatment with particular attention to the degradation of organic compounds, Symp. Soc. Gen. Microbiol. 29:221–261.Google Scholar
  290. Slonczewski, J. L., 1992, pH regulated genes in enteric bacteria, Am. Soc. Microbiol. News 58:140–144.Google Scholar
  291. Snyder, R. A., 1990, Chemoattraction of a bactivorous cilitate to bacteria surface compounds, Hydrobiologia 215:205–213.CrossRefGoogle Scholar
  292. Sonea, S., and Panisset, M., 1983, A New Bacteriology, Jones and Bartlett, Boston, Mass.Google Scholar
  293. Sorongon, M. L., Bloodgood, R. A., and Burchard, R. P., 1991, Hydrophobicity, adhesion, and surface-exposed proteins of gliding bacteria, Appl. Environ. Microbiol. 57:3193–3199.PubMedGoogle Scholar
  294. Stahl, D. A., 1993, The natural history of microorganisms, Am. Soc. Microbiol. News 59:609–613.Google Scholar
  295. Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L., 1988, Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology, Appl. Environ. Microbiol. 54:1079–1084.PubMedGoogle Scholar
  296. Staley, J. T., 1971, Incidence of prosthecate bacteria in a polluted stream, J. Appl. Microbiol. 22:496–502.Google Scholar
  297. Stanley, P. M., 1983, Factors affecting the irreversible attachment of Pseudomonas aeruginosa to stainless steel, Can. J. Microbiol. 29:1493–1499.PubMedCrossRefGoogle Scholar
  298. Stewart, P. S., Peyton, B. M., Drury, W. J., and Murga, R., 1993, Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms, Appl. Environ. Microbiol. 59:327–329.PubMedGoogle Scholar
  299. Stock, J. B., Stock, A. M., and Mottonen, J. M., 1990, Signal transduction in bacteria, Nature 344:395–400.PubMedCrossRefGoogle Scholar
  300. Stotzky, G., and Burns, R. G., 1982, The soil environment: Clay-humus-microbe interactions, in: Experimental Microbial Ecology (R. G. Burns and J. H. Slater, eds.), Blackwell Scientific, Oxford, England pp. 105–133.Google Scholar
  301. Stotzky, G., Devana, M. A., and Zeph, L. R., 1990, Methods for studying bacterial gene transfer in soil by conjugation and transduction, Adv. Appl. Microbiol. 35:57–169.PubMedCrossRefGoogle Scholar
  302. Stove-Poindexter, J., 1964, Biological properties and classification of the Caulobacter group, Bacteriol. Rev. 28:231–295.Google Scholar
  303. Sutherland, I. W., 1985, Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides, Annu. Rev. Microbiol. 39:243–270.PubMedCrossRefGoogle Scholar
  304. Tarn, A. C., Behki, R. M., and Khan, S. U., 1987, Isolation and characterization of an s-ethyl-N,N-dipropylthiocarbamate-degrading Arthrobacter strain and evidence for plasmid-associated s-ethyl-N,N-dipropylthiocarbamate degradation, Appl. Environ. Microbiol. 53:1088–1093.Google Scholar
  305. Thiele, J. H., Chartrain, M., and Zeikus, J. G., 1988, Control of interspecies electron flow during anaerobic digestion: Role of floc formation in syntrophic methanogenesis, Appl. Environ. Microbiol. 54:10–19.PubMedGoogle Scholar
  306. Troy, F. A., 1979, The chemistry and biosynthesis of selected bacterial capsular polymers, Annu. Rev. Microbiol. 33:519–560.PubMedCrossRefGoogle Scholar
  307. Tsezos, K., and Bell, J. P., 1988, Significance of biosorption for the hazardous organics removal efficiency of a biological reactor, Water Res. 22:391–394.CrossRefGoogle Scholar
  308. Uhlinger, D. J., and White, D. C., 1983, Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica, Appl. Environ. Microbiol. 45:64–70.PubMedGoogle Scholar
  309. Vandevivere, P., and Kirchman, D. L., 1993, Attachment stimulates exopolysaccharide synthesis by a bacterium, Appl. Environ. Microbiol. 59:3280–3286.PubMedGoogle Scholar
  310. Van Elsas, J. D., Trevors, J. T., and Starodub, M. E., 1988, Bacterial conjugation between Pseudomonas in the rhizosphere of wheat, FEMS Microbiol. Ecol. 53:299–306.CrossRefGoogle Scholar
  311. Van Loosdrecht, M. C. M., Norde, W., and Zehnder, A. J. B., 1987, Influence of cell surface characteristics on bacterial adhesion to solid surfaces, Proc. Eur. Congr. Biotechnol. 4:575–580.Google Scholar
  312. Van Loosdrecht, M. C. M., Lyklema, J., Norde, W., and Zehnder, A. J. B., 1989, Bacterial adhesion: A physiochemical approach, Microb. Ecol. 17:1–15.CrossRefGoogle Scholar
  313. Van Pelt, A. W. J., Weerkamp, A. H., Uyen, M. H. W. J. C., Busscher, H. J., de Jong, H. P., and Arends, J., 1985, Adhesion of Streptococcus sanguis CH3 to polymers with different surface free energies, Appl. Environ. Microbiol. 49:1270–1275.PubMedGoogle Scholar
  314. Vargas, R., and Hattori, T., 1990, The distribution of protozoa among soil aggregates, FEMS Microbial. Ecol. 74:73–78.CrossRefGoogle Scholar
  315. Veal, D. A., Stokes, H. W., and Daggard, G., 1992, Genetic exchange in natural microbial communities, in: Advances in Microbial Ecology, Vol. 12 (K. C. Marshall, ed.), Plenum Press, New York, pp. 383–430.CrossRefGoogle Scholar
  316. Venosa, A. D., 1975, Lysis of Spaerotilus natans swarms by Bdellovibrio bacteriovirus, Appl. Environ. Microbiol. 29:702–705.Google Scholar
  317. Vesper, S. J., and Bauer, W. D., 1986, Role of pili (fimbriae) in attachment of Bradyrhizobium japonicum to soybean roots, Appl. Environ. Microbiol. 52:134–141.PubMedGoogle Scholar
  318. Vogel, S., 1983, Life in Moving Fluids: The Physical Biology of Flow, Princeton University Press, Princeton, N.J.Google Scholar
  319. Von Riesen, V. L., 1980, Digestion of algin by Pseudomonas maltophilia and Pseudomonas putida, Appl. Environ. Microbiol. 39:92–96.Google Scholar
  320. Wahl, M., 1989, Marine epibiosis. I. Fouling and antifouling: Some basic aspects, Mar. Ecol. Prog. Ser. 58:175–189.CrossRefGoogle Scholar
  321. Walker, N., 1976, Microbial degradation of plant protection chemicals, in: Soil Microbiology (N. Walker, ed.), Wiley and Sons, Toronto, Canada, pp. 181–192.Google Scholar
  322. Walt, D. R., Smulow, J. B., Turesky, S. S., and Hill, R. G., 1985, The effect of gravity on initial microbial adhesion, J. Colloid Interface Sci. 107:334–336.CrossRefGoogle Scholar
  323. Ward, D. M., Weiler, R., and Bateson, M. M., 1990, 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community, Nature 453:63–65.CrossRefGoogle Scholar
  324. Ward, D. M., Bateson, M. M., Weiler, R., and Ruff-Roberts, A. L., 1992, Ribosomal RNA analysis of microorganisms as they occur in nature, in: Advances in Microbial Ecology, Vol. 12 (K. C. Marshall, ed.), Plenum Press, New York, pp. 219–286.CrossRefGoogle Scholar
  325. White, D. C., 1984, Chemical characterization of films, in: Microbial Adhesion and Aggregation (K. C. Marshall, ed.), Springer Verlag, New York, pp. 159–176.CrossRefGoogle Scholar
  326. Wickham, G. S., and Atlas, R. M., 1988, Plasmid frequency fluctuations in bacterial populations from chemically stressed soil communities, Appl. Environ. Microbiol. 54:2192–2196.PubMedGoogle Scholar
  327. Wiggins, B. A., Jones, S. H., and Alexander, M., 1987, Explanations for the acclimation period preceding the mineralization of organic chemicals in aquatic environments, Appl. Environ. Microbiol. 53:791–796.PubMedGoogle Scholar
  328. Wilson, J. T., McNabb, J. F., Cochran, J. W., Wang, T. H., Tomson, M. B., and Bedient, P. B., 1985, Influence of microbial adaptation on the fate of organic pollutants in ground water, Environ. Toxicol. Chem. 4:721–726.Google Scholar
  329. Wimpenny, J. W. T., 1981, Spatial order in microbial ecosystems, Biol. Rev. 56:295–342.CrossRefGoogle Scholar
  330. Wimpenny, J. W. T., 1992, Microbial systems: Patterns in time and space, in: Advances in Microbial Ecology, Vol. 12 (K. C. Marshall, ed.), Plenum Press, New York, pp. 469–522.CrossRefGoogle Scholar
  331. Woese, C. R., 1994, There must be a prokaryote somewhere: Microbiology’s search for itself Microbiol. Rev. 58:1–9.PubMedGoogle Scholar
  332. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., Caldwell, S. J., and Caldwell, D. E., 1994a, Multicellular organization in a degradative biofilm community, Appl. Environ. Microbiol. 60:434–446.PubMedGoogle Scholar
  333. Wolfaardt, G. M., Lawrence, J. R., Headley, J. V., Robarts, R. D., and Caldwell, D. E., 1994b, Microbial exopolymers provide a mechanism for bioaccumulation of contaminants, Microb. Ecol. 27:279–291.CrossRefGoogle Scholar
  334. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1994c, The role of interactions, sessile growth and nutrient amendment on the degradative efficiency of a bacterial consortium, Can. J. Microbiol. 40:331–340.PubMedCrossRefGoogle Scholar
  335. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1995a, Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation, Appl. Environ. Microbiol. 61:152–158.PubMedGoogle Scholar
  336. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1995b, In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics, Appl. Environ. Microbiol., submitted.Google Scholar
  337. Wrangstadh, M., Conway, P. L., and Kjelleberg, S., 1989, The role of an extracellular polysaccharide produced by the marine Pseudomonas sp. S9 in cellular detachment during starvation, Can. J. Microbiol. 35:309–312.CrossRefGoogle Scholar
  338. Wright, J. B., Costerton, J. W., and McCoy, W. F., 1988, Filamentous growth of Pseudomonas aeruginosa, J. Indust. Microbiol. 3:139–146.CrossRefGoogle Scholar
  339. Wyndham, R. C., Nakatsu, C., Peel, M., Cashore, A., Ng, J., and Szilagyi, F., 1994, Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system, Appl. Environ. Microbiol. 60:86–93.PubMedGoogle Scholar
  340. Zanyk, B. N., 1993, Degradation and Mobility of Diclofop Methyl in Model Groundwater Systems, University of Saskatchewan, Saskatoon, Canada, M.Sc. thesis.Google Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • John R. Lawrence
    • 1
  • D. R. Korber
    • 2
  • G. M. Wolfaardt
    • 2
  • D. E. Caldwell
    • 2
  1. 1.National Hydrology Research InstituteSaskatoonCanada
  2. 2.Department of Applied Microbiology and Food ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations