Contributions to the Relativistic Generalization of the Kinetic Theory of Gases and Statistical Mechanics

  • J. I. Horváth


The concept of the space-time world represents the geometrization of the space and time relations of the physical system considered. While in the framework of the special theory of relativity only the kinematic aspects of the space and time relations are characterized and the space-time continuum as an underlying geometrical background of physical events has been considered, in Einstein’s theory of gravitation the space-time continuum has significantly other meaning, namely, its geometrical structure is determined by the gravitational interactions, therefore, the space-time continuum also represents a geometrization of the gravitational field.


Lorentz Transformation Gaseous Particle Relativistic Generalization Local Rest Frame Orthonormal Tetrad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. I. Horváth and A. Moór, Koninkl. Ned. Akad. Wetenschap. Proc. Ser. A A58: 421, 581 (1955).Google Scholar
  2. 2.
    J. I. Horváth, Acta Phys. 9: 3 (1963).Google Scholar
  3. 3.
    J. I. Horváth, Nuovo Cim. Suppl. 9 (10): 444 (1958).MATHCrossRefGoogle Scholar
  4. 4.
    J. L. Synge, “Relativity: The General Theory,” Amsterdam, North-Holland, 1960.MATHGoogle Scholar
  5. 5.
    J. I. Horváth, Wiss. Z. Friedrich-Schiller-Univ. Jena Math. Naturwiss Reihe. 15: 149 (1966).Google Scholar
  6. 6.
    L. Fodor, Zs. Kövesy, and G. Marx, Acta Phys. Acad. Sci Hung. 17: 171 (1964).MATHCrossRefGoogle Scholar
  7. 7.
    Ken-Iti Goto, Progr. Theoret. Phys. (Kyoto) 20: 1 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    N. A. Chernikov, Soviet Phys. “Doklady” English Transl 2: 248 (1957); 5: 764, 786 (1960); 7: 397, 414, 428 (1962); Reprint (Dubna, 1962).ADSMATHGoogle Scholar
  9. 9.
    W. Israel, J. Math. Phys. 4: 1163 (1963).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    J. I. Horváth, Acta Phys. et Chem, Szeged, 9: 3 (1963).Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • J. I. Horváth
    • 1
  1. 1.Department of Theoretical PhysicsJózsef Attila UniversitySzegedHungary

Personalised recommendations