Relativistic Wave Equations for Higher Spin and Their Quantization

  • P. M. Mathews


The scope of this paper will be limited to the presentation of certain recent results on relativistic wave equations which describe particles of definite (but arbitrary) spin s and mass m, and on the quantization of these equations. To be more specific, the equations to be considered will have the Schrödinger form
$$i\frac{\partial \psi} {\partial t}(\mathbf{x},t)=H \psi (\mathbf{x},t)$$
with the Hamiltonian H chosen in such a way as to leave (1) invariant under the transformations of the Poincaré group‡ as well as under the discrete transformations: P (space inversion), T (time reversal), and C (charge conjugation). The derivation of such equations was the subject matter of my paper presented at the last Matscience symposium.1 It is useful to recall here the main steps in this derivation before proceeding to the problem of second quantization. But let us start by enumerating the basic tenets of the philosophy behind equation (1).


High Spin Lorentz Group SchrOdinger Equation Plane Wave Solution Integral Spin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Symposia on Theoretical Physics and Mathematics,” Vol. 6, Ed. Alladi Ramakrishnan, Plenum Publishing Corp. New York, 1967.Google Scholar
  2. 2.
    E. M. Corson, “Tensors, Spinors and Relativistic Wave Equations,” Blackie, London, 1954.Google Scholar
  3. 3.
    N. Kemmer, Proc. Roy. Soc. A 173: 91 (1939).MathSciNetADSGoogle Scholar
  4. 4.
    L. L. Foldy, Phys. Rev. 102: 568 (1956).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    S. Weinberg, Phys. Rev. 133: B1318 (1964).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    P. M. Mathews, Phys. Rev. 143: 978 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    P. M. Mathews, Phys. Rev., 155: 1415 (1967).ADSMATHCrossRefGoogle Scholar
  8. 8.
    D. L. Weaver, C. L. Hammer and R. H. Good, Jr., Phys. Rev. 135: B241 (1964).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    E. P. Wigner, Ann. Math. 40: 149 (1939).MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • P. M. Mathews
    • 1
  1. 1.University of MadrasMadrasIndia

Personalised recommendations