Certain Problems in the Design of Programmed-Motion Systems

  • A. S. Galiullin


The fundamental notions and axioms of classical mechanics, as well as the methods developed therein, have been directed primarily toward the solution of the following problems:1,2
  1. 1.

    Given the effective forces acting on a mechanical system and the constraints imposed on the particles of the system and on the system as a whole, determine the law of motion governing the system (the direct problem).

  2. 2.

    Given the motion of a mechanical system, determine the forces acting on that system (the converse problem).



Mechanical System Parametric Perturbation Direct Problem Control Element Auxiliary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Lagrange, “Analytical Mechanics” [Russian translation], Gostekhizdat, 1950.Google Scholar
  2. 2.
    G. K. Suslov, “Theoretical Mechanics” [in Russian], Gostekhizdat, 1946.Google Scholar
  3. 3.
    N. E. Zhukovskii, “Stability of Motion, Collected Works, Vol. I” [in Russian], Gostekhizdat, 1948.Google Scholar
  4. 4.
    A. M. Lyapunov, “General Problem of the Stability of Motion” [in Russian], Gostekhizdat, 1950.Google Scholar
  5. 5.
    I. V. Meshcherskii, “Papers on the Mechanics of Variable-Mass Bodies” [in Russian], Gostekhizdat, 1949.Google Scholar
  6. 6.
    L. S. Polak, “Variational Principles of Mechanics” [in Russian], Gostekhizdat, 1960.Google Scholar
  7. 7.
    K. Lantsosh, “Variational Principles of Mechanics” [in Russian], Izd. “Mir,” 1965.Google Scholar
  8. 8.
    H. S. Tsien, “Engineering Cybernetics,” McGraw-Hill Book Co., N. Y., 1954.Google Scholar
  9. 9.
    A. G. Ivakhnenko, “Engineering Cybernetics” [in Russian], Gostekhizdat, UkrSSR, 1959.Google Scholar
  10. 10.
    A. M. Letov, “Stability of Nonlinear Control Systems” [in Russian], Fizmatgiz, 1962.Google Scholar
  11. 11.
    A. A. Fel’dbaum, “Fundamentals of the Theory of Optimal Automatic Systems” [in Russian], Izd. “Nauka,” 1966.Google Scholar
  12. 12.
    R. E. Bellman and S. E. Dreyfus, “Applied Dynamic Programming,” Princeton University Press, Princeton, N. J., 1962.MATHGoogle Scholar
  13. 13.
    A.S. Galiullin, “Dynamic programming problems,” Tr. UDN im. P. Lumumby, seriya teor. mekh. 5 (2): (1964).Google Scholar
  14. 14.
    L. Davis, Jr., W. Follin, Jr., and L. Blitzer, “Exterior Ballistics of Rockets,” Van Nostrand, Princeton, N. J., 1958.Google Scholar
  15. 15.
    A. M. Letov, “Analytical controller design,” Avtomatika i telemekhanika 21 (4): (1960).Google Scholar
  16. 16.
    A. S. Galiullin, “Analytical design of rocket control systems,” Tr. UDN im. P. Lumumby, seriya teor. mekh. 1 (1): (1963).Google Scholar
  17. 17.
    N. P. Erugin, “Construction of a complete set of systems of differential systems having a specified integral curve,” Prikl. matem. i mekh., 16 (6): (1952).Google Scholar
  18. 18.
    M. B. Ignat’ev, “Holonomic Automatic Systems,” [in Russian], (Izd. AN SSSR, 1963).Google Scholar
  19. 19.
    R. G. Mukharlymov, “Construction of a Set of Systems of Differential Equations Having Specified Integrals,” Differentsial’nye uravneniya, No. (1966).Google Scholar
  20. 20.
    I. A. Mukhametzyanov, “Construction of a set of systems of differential equations of stable motion according to a specified program, Tr. UDN sm. P. Lumumby. seriya teor. mekh. 1 (1): (1963).Google Scholar
  21. 21.
    A. G. Aleksandrov, “Optimality of automatic control systems in the problem of automatic controller design,” Tr. UDN im. P. Lumumby, seriya teor. mekh. 17 (4): (1966).Google Scholar
  22. 22.
    Zh. Kirgizbaev, “Stability of the programmed motion of a variable-mass point, taking account of the earth’s rotation,” Izv. Akad. Nauk Kaz. SSR, Ser. Fiz. Mat. No. 1 (1966).Google Scholar
  23. 23.
    A. S. Galiullin, “Certain Problems in the Stability of Programmed Motion,” [in Russian], Tatknigoizdat, 1960.Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • A. S. Galiullin
    • 1
  1. 1.Department of Theoretial MechanicsPeople’s Friendship UniversityMoscowU.S.S.R

Personalised recommendations