Generalized Analytic Continuation

  • Harold S. Shapiro


One of the most important notions in connection with the study of analytic functions is that of analytic continuation. Several recent investigations have encountered situations where there is associated with an analytic function in a domain, another function analytic in a contiguous domain which can lay claim to being a “continuation” of the original function, even though the original function is nowhere continuable in the classical sense. Such a situation arises, for instance, if the first function has nontangential limiting values almost everywhere on some smooth arc of the boundary and the second function has identical nontangential limiting values almost everywhere on that arc. As follows from a theorem of Lusin and Privalov, the two functions then uniquely determine one another.


Periodic Function Analytic Continuation Meromorphic Function Interpolation Problem Minimal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Akutowicz and L. Carleson, “The analytic continuation of interpolatory functions,” J. Anal. Math. 7: 223–247 (1959/60).MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Bochner and H. F. Bohnenblust, “Analytic functions with almost periodic coefficients, Ann. Math. 35: 152–161 (1934).MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Douglas, H. S. Shapiro, and A. L. Shields, “On cyclic vectors of the backward shift,” Bull. Amer. Math. Soc. 73: 156–159 (1967).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    A. A. Gonchar, “On quasi-analytic continuation of analytic functions through a Jordan arc,” Doklady Akad. Nauk. U.S.S.R. 166: 1028–1031 (1966). (Russian).Google Scholar
  5. 5.
    R. Peterson, “Laplace Transformation of Almost Periodic Functions,” Eleventh Scandinavian Mathematical Congress (1949), 158–163.Google Scholar
  6. 6.
    I. I. Privalov, “Randeigenschaften Analytischer Funktionen,” Deutscher Verlag der Wissenschaften, 1956, p. 212.Google Scholar
  7. 7.
    H. S. Shapiro, “Weighted polynomial approximation and boundary behaviour of analytic functions,” in Contemporary Problems of the Theory of Analytic Functions, Nauka, Moscow (1966), p. 326–335.Google Scholar
  8. 8.
    H. S. Shapiro, “Overconvergence of sequences of rational functions with sparse poles,” Arkiv. för Matematik, 1968 (in press).Google Scholar
  9. 9.
    H. S. Shapiro, “Smoothness of the boundary function of a holomorphic function of bounded type, and the generalized maximum principle,” Arkiv. för Matematik 1968 (in press).Google Scholar
  10. 10.
    J. Wolff, “Sur les séries \(\sum {A_k } /(z - \alpha _k ),\),” Comptes Rendus, 173: 1057–1058, 1327-1328(1921).Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • Harold S. Shapiro
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations