Cyclic Nucleotide Phosphodiesterases

  • Samuel J. Strada
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 44)


Once adenosine 3′,5′-monophosphate (cyclic AMP) was established as the heat stable factor that mediated the activation of liver phosphorylase by epinephrine and glucagonl, the search began to identify an enzyme to inactivate the factor. A number of general phosphatases and diesterases failed to affect it. However, an enzyme capable of destroying the biological activity of cyclic AMP was detected in extracts of heart, brain and liver2. The enzyme was later identified in a great many tissues3 and shown to form adenosine 5′-phosphate as the product of hydrolysis. Partially purified enzyme activity from dog heart was activated by magnesium ion and inhibited by the methylxanthine caffeine. The possible complexity of this activity, as a system, was indicated by its presence in soluble as well as particulate fractions. Approximately 60% of the phosphodiesterase activity in homogenates of beef heart was found to be associated with particulate fractions after low-speed centrifugation. The apparent Km of the partially purified soluble enzyme activity was around 100pM. It was inhibited, in a competitive manner, by theophylline>theobromine = caffeine. The activity was stimulated by imidazole which shifted the pH optima for enzyme activity from around 8 (in tris buffer) to approximately 7.4. Subsequent attempts to purify phosphodiesterase from other tissue sources, e.g., rabbit brain4, dog heart5 and rat brain6 failed to yield enzyme preparations with specific activities greater than those reported for the beef heart enzyme3.


Cyclic Nucleotide Enzyme Form Phosphodiesterase Activity Cyclic Nucleotide Phosphodiesterase Beef Heart 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. W. Rall and E. W. Sutherland, J. Biol. Chem. 232: 105 (1958).Google Scholar
  2. 2.
    E. W. Sutherland and T. W. Rall, J. Biol. Chem. 232: 1077 (1958).PubMedGoogle Scholar
  3. 3.
    R. W. Butcher and E. W. Sutherland, J. Biol. Chem. 237: 1244 (1962).PubMedGoogle Scholar
  4. 4.
    G. I. Drummond and S. Perrott-Yee, J. Biol Chem. 236: 1126 (1962).Google Scholar
  5. 5.
    K. G. Nair, Biochemistery 5: 150 (1966).CrossRefGoogle Scholar
  6. 6.
    W. Y. Cheung, Biochemistery 6: 1079 (1966).CrossRefGoogle Scholar
  7. 7.
    G. Brooker, L. J. Thomas and M. M. Appleman, Biochemistry 7: 4177 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    W. J. Thompson and M. M. Appleman, Biochemistry 7: 4177 (1968).CrossRefGoogle Scholar
  9. 9.
    T. R. Russell, W. J. Thompson, F. W. Schneider and M. M. Appleman, Proc. Natl. Acad. Sci. U.S.A. 69: 1791 (1972).CrossRefGoogle Scholar
  10. 10.
    W. J. Appleman and M. M. Appleman, J. Biol. Chem. 246: 3145 (1971).PubMedGoogle Scholar
  11. 11.
    J. N. Wells and J. G. Hardman, Adv. Cyclic Nucl. Res. 8: 119 (1977).Google Scholar
  12. 12.
    S. J. Strada and W. J. Thompson, Adv. Cyclic Nucl. Res. 9: 265 (1978).Google Scholar
  13. 13.
    W. J. Thompson, P. M. Epstein and S. J. Strada, Biochemistry 18: 5228 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    R. K. Sharma, T. H. Wang, E. Wirch and J. H. Wang, J. Biol. Chem. 255: 5916 (1980).PubMedGoogle Scholar
  15. 15.
    W. J. Thompson, G. Brooker and M. M. Appleman, Methods Enzymol 38: 205 (1974).PubMedCrossRefGoogle Scholar
  16. 16.
    W. J. Thompson and M. M. Appleman, Biochemistry 10: 311 (1979).Google Scholar
  17. 17.
    W. J. Thompson, W. J. Terasaki, P. M. Epstein and S. J. Strada, Adv. Cyclic Nucl. Res. 10: 69 (1979).Google Scholar
  18. 18.
    J. Londesborough, Anal. Biochem. 71: 623 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    T. R. Russell, W. L. Terasaki and M. M. Appleman, J. Biol. Chem. 248: 1334 (1973).PubMedGoogle Scholar
  20. 20.
    W. L. Terasaki and M. M. Appleman, Metabolism 24: 311 (1975).PubMedCrossRefGoogle Scholar
  21. 21.
    H. Hidaka and T. Asano, Biochim. Biophys. Acta 429: 485 (1976).CrossRefGoogle Scholar
  22. 22.
    R. G. Van Inwegen, W. J. Pledger S. J. Strada and W. J. Thompson, Arch. Biochem. Biophys. 175: 700 (1976).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Uzunov and B. Weiss, Biochim. Biophys. Acta 284: 220 (1972).CrossRefGoogle Scholar
  24. 24.
    S. J. Strada, P. Uzunov and B. Weiss, J. Neurochem. 23: 1097 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    B. Weiss, R. Fertel, R. Figlin and P. Uzunov, Mol. Pharmacol. 10: 615 (1974).Google Scholar
  26. 26.
    B. Weiss, Adv. Cyclic Nucl. Res. 5: 195 (1975).Google Scholar
  27. 27.
    W. J. Thompson and S. J. Strada, in: “Receptors and Hormone Action”, Vol.3, L. Birnbaumer and B. W. O’Malley, 553 Academic Press, New York (1978).Google Scholar
  28. 28.
    R. J. Marchmont and M. D. Houslay, Nature 286: 904 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Kono, F. W. Robinson and J. A. Sarber, J. Biol. Chem. 250: 7826 (1975).PubMedGoogle Scholar
  30. 30.
    A. Robertson and J. Grutsch, Life Sci. 15: 1031 (1976).CrossRefGoogle Scholar
  31. 31.
    S. J. Strada and W. J. Pledger, in: “Cyclic Nucleotides in Disease”, B. Weiss, ed., 3, University Park Press, Baltimore, Md. (1975).Google Scholar
  32. 32.
    W. J. Pledger, W. J. Thompson, P. M. Epstein and S. J. Strada, J. Cell. Physol. 100: 497 (1979).CrossRefGoogle Scholar
  33. 33.
    P. M. Epstein, J. S. Mills, E. M. Hersh, S. J. Strada and W. J. Thompson, Cancer Res. 40: 379 (1980).PubMedGoogle Scholar
  34. 34.
    G. M. Stancel, W. J. Thompson and S. J. Strada, Molec. Cell. Endo. 3:283 (1975).Google Scholar
  35. 35.
    J. J. Heindel, M. I. Hintz, E. Steinberger and S. J. Strada, Endo. Res. Commun. 4: 311 (1977).CrossRefGoogle Scholar
  36. 36.
    B. Weiss and S. J. Strada in: “Fetal Pharmacology”, L. Boureus, ed., 205, Raven Press, New York (1973).Google Scholar
  37. 37.
    J. A. Smoake, S. Y. Song and W. Y. Cheung, Biochim. Biophys. Acta 341: 402 (1974).CrossRefGoogle Scholar
  38. 38.
    E. A. Gardner, W. J. Thompson, S. J. Strada and G. M. Stancel, Biochemistry 17: 2995 (1978).PubMedCrossRefGoogle Scholar
  39. 39.
    E. G. Beale, J. R. Dedman and A. R. Means, Endocrinology 100: 1621 (1977).CrossRefGoogle Scholar
  40. 40.
    M. Vaughan, in:“Eukaryotic Cell Function and Growth: Regulation by Intracellular Cyclic Nucleotides”, J. E. Dumont,B. L. Brown and N. J. Marshall, 195, Plenum Press, New York (1976).Google Scholar
  41. 41.
    J. A. Nesbitt, W. B..Anderson, Z. Miller, I. Pastan, T. R. Russell and D. Gospodarowicz, J. Biol. Chem. 251: 2344 (1976).PubMedGoogle Scholar
  42. 42.
    H. R. Bourne, G. M. Tomkins and S. Dion, Science 181: 952 (1973).PubMedCrossRefGoogle Scholar
  43. 43.
    H. R. Bourne, P. Coffino, K. L. Thomkins, and Y. Weinstein, Adv. Cyclic Nucl. Res. 5: 771 (1975).Google Scholar
  44. 44.
    F. J. Chlapowski, L. A. Kelly and R. W. Butcher, Adv. Cyclic Nucl. Res. 5: 245 (1975).Google Scholar
  45. 45.
    W. J. Pledger, R. M. Gardner, P. M. Epstein, W. J. Thompson, S. J. Strada, and L. Wlodyka, Exptl. Cell Res. 118: 389 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Samuel J. Strada
    • 1
  1. 1.Department of PharmacologyThe University of Texas Medical School at HoustonHoustonUSA

Personalised recommendations