Guanylate Cyclase: Properties and Regulation

  • Joel G. Hardman
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 44)


Cyclic GMP was discovered in biological material in 19631, and guanylate cyclase, the enzyme that catalyzes the formation of the cyclic nucleotide from GTP, was first described in 19692–5. Because of its chemical similarity to cyclic AMP, cyclic GMP has long been assumed to be involved in cellular regulation. This assumption has been reinforced by observations that cellular levels of cyclic GMP rapidly increase in response to agonists that affect such processes as myocardial and smooth muscle contraction, cell division, exocrine and endocrine secretion, platelet aggregation and neuronal activity (see reference 6 for a thorough review of this area). The role of cyclic GMP in these processes, however, is still obscure.


Guanylate Cyclase Soluble Enzyme Soluble Guanylate Cyclase Activate Guanylate Cyclase Particulate Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.F. Ashman, R. Lipton, M.M. Melicow, and T.D. Price, Biochem. Biophys. Res. Commun. 11: 330–334 (1963).CrossRefGoogle Scholar
  2. 2.
    J.G. Hardman, and E.W. Sutherland, J. Biol. Chem. 244: 6363–6370 (1969).PubMedGoogle Scholar
  3. 3.
    E. Ishikawa, S. Ishikawa, J.W. Davis, and E.W. Sutherland, J. Biol. Chem. 244: 6371–6376 (1969).PubMedGoogle Scholar
  4. 4.
    A.A. White, and G.D. Aurbach, Biochim. Biophys. Acta. 191: 686–697 (1969).CrossRefGoogle Scholar
  5. 5.
    G. Schultz, E. Bôhme, and K. Munske, Life Sci. 8: 1323–1332 (1969).PubMedCrossRefGoogle Scholar
  6. 6.
    N.D. Goldberg, and M.K. Haddox, Ann. Rev. Biochem. 46: 823–896 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Greengard, Trends in Pharm. Sci. 1: 27–29 (1979).Google Scholar
  8. 8.
    G. Schultz, J.G. Hardman, K. Schultz, C.E. Baird and E.W. Sutherland, Proc. Nat. Acad. Sci. U.S.A. 70: 3889–3893 (1973).CrossRefGoogle Scholar
  9. 9.
    F. Murad, W.P. Arnold, C.K. Mittal, and J.M. Braughler, Advan. Cyc. Nuc. Res. 11: 175–204 (1979).Google Scholar
  10. 10.
    D.L. Garbers, T.D. Chrisman, and J.G. Hardman. in: “Eukaryotic Cell Function and Growth: Regulation by Intracellular Cyclic Nucleotides” J.E. Dumont, B.L. Brown and N.J. Marshall, eds., Plenum Press, New York and London, pp. 155–193 (1976).Google Scholar
  11. 11.
    D.L. Garbers, T.D. Chrisman, J.L. Suddath, and J.G. Hardman, Arch. Biochem. Biophys 166: 135–138 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    D.L. Garbers, J.L. Suddath, and J.G. Hardman, Biochim. Biophys. Acta 377: 174–185 (1975).CrossRefGoogle Scholar
  13. 13.
    D.L. Garbers, J. Biol. Chem. 253: 1898–1901 (1978).PubMedGoogle Scholar
  14. 14.
    G. Schultz, and J.G. Hardman, Advan. Cyc. Nuc. Res. 5: 339–351 (1975).Google Scholar
  15. 15.
    D.L. Garbers, T.D. Chrisman, and J.G. Hardman, in: “Molecular Biology and Pharmacology of Cyclic Nucleotides”, G. Folco, and R. Paoletti, eds., Elsevier/North Holland Biomedical Press, Amsterdam, pp. 43–55 (1978).Google Scholar
  16. 16.
    D. Wallach, and I. Pastan, Biochem. Biophys. Res. Comm. 72: 859–865 (1976).Google Scholar
  17. 17.
    J. Levilliers, F. Lecot, and J. Pairault, Biochem. Biophys. Res. Commun. 84: 727–735 (1978).CrossRefGoogle Scholar
  18. 18.
    S.N. Levine, A.L. Steiner, H.S. Earp, and G. Meissner, Biochim. Biophys. Acta 566: 171–182 (1979).CrossRefGoogle Scholar
  19. 19.
    S. Nagao, Y. Suzuki, Y. Watanabe, and Y. Nozawa, Biochem. Biophys. Res. Comm. 90: 261–268 (1979).CrossRefGoogle Scholar
  20. 20.
    E. Böhme, R. Jung, and I. Mechler, in: “Methods in Enzymology”, J.G. Hardman and B.W. O’Malley, eds., Academic Press, New York, Vol. 38, pp. 199–202 (1974).Google Scholar
  21. 21.
    A.A. White, K.M. Crawford, C.S. Patt, and P.J. Lad, J. Biol. Chem. 251: 7304–7312 (1976).PubMedGoogle Scholar
  22. 22.
    E. Bôhme, H. Graf, and G. Schultz, Advan. Cyc. Nuc. Res. 9: 131–143 (1978).Google Scholar
  23. 23.
    F.R. DeRubertis, and P.A. Craven, J. Biol. Chem. 251: 4651–4658 (1976).PubMedGoogle Scholar
  24. 24.
    H. Hidaka, and T. Asano, Proc. Nat. Acad. Sci. U.S.A. 74: 3657–3661 (1977).CrossRefGoogle Scholar
  25. 25.
    G. Graff, J.H. Stephenson, D.B. Glass, M.K. Haddox, and N.D. Goldberg, J. Biol. Chem. 253: 7662–7676 (1978).PubMedGoogle Scholar
  26. 26.
    M.K. Haddox, J.H. Stephenson, M.E. Moser, and N.D. Goldberg, J. Biol. Chem. 253: 3143–3152 (1978).PubMedGoogle Scholar
  27. 27.
    C.K. Mittal, and F. Murad, Proc. Nat. Acad. Sci. U.S.A. 74: 4360–4364 (1977).CrossRefGoogle Scholar
  28. 28.
    M. Fujimoto, and T. Okabayashi, Biochem. Biophys. Res. Comm. 67: 1332–1336 (1975).CrossRefGoogle Scholar
  29. 29.
    J. Zwiller, J. Ciesielski-Treska, and P. Mandel, FEBS Lett., 69: 286–290 (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    S.J. Sulakhe, N.L.-K. Leung, and P.V. Sulakhe, Biochem. J. 157: 713–719 (1976).PubMedGoogle Scholar
  31. 31.
    D. Aunis, M. Pescheloche, and J. Zwiller, Neuroscience 3: 83–93 (1978).CrossRefGoogle Scholar
  32. 32.
    W.T. Shier, J.H. Baldwin, M. Nilsen-Hamilton, R.T. Hamilton, and N.M. Thanassi, Proc. Nat. Acad. Sci. U.S.A. 73: 1586–1590 (1976).CrossRefGoogle Scholar
  33. 33.
    D. Wallach, and I. Pastan, J. Biol. Chem. 251: 5802–5809 (1976).PubMedGoogle Scholar
  34. 34.
    T. Asakawa, I. Scheinbaum, and R-j. Ho, Biochem. Biophys. Res. Comm. 73: 141–148 (1976).CrossRefGoogle Scholar
  35. 35.
    T. Asakawa, M. Takenoshita, S. Uchida, and S. Tanaka, J. Neurochem. 30: 161–166 (1978).CrossRefGoogle Scholar
  36. 36.
    A.J. Barber, Biochim. Biophys. Acta. 444: 579–595 (1976).CrossRefGoogle Scholar
  37. 37.
    D.B. Glass, W. Frey, D.W. Carr, and N.D. Goldberg, J. Biol. Chem. 252: 1279–1285 (1977).PubMedGoogle Scholar
  38. 38.
    A. Derksen, and P. Cohen, J. Biol. Chem. 250: 9342–9347 (1975).PubMedGoogle Scholar
  39. 39.
    H.Brockerhoff, and R.G.Jensen, “Lipolytic Enzymes”, Academic Press, New York (1974)Google Scholar
  40. 40.
    H.R. Knapp, O. Oelz, J. Roberts, B.J. Sweetman, J.A. Oates, and P.W. Reed, Proc. Nat. Acad. Sci. U.S.A. 74: 4251–4255 (1977).CrossRefGoogle Scholar
  41. 41.
    R.I. Clyman, A.S. Blacksin, V.C. Manganiello, and M. Vaughan, Proc. Nat. Acad. Sci. U.S.A. 72: 3883–3887 (1975).CrossRefGoogle Scholar
  42. 42.
    F.R. DeRubertis, and P.A. Craven, Metabolism 28: 855–868 (1978).CrossRefGoogle Scholar
  43. 43.
    D.B. Glass, J.M. Gerrard, D. Townsend, D.W. Carr, J.G. White, and N.D. Goldberg, J. Cyclic Nuc. Res. 3: 37–44 (1977).Google Scholar
  44. 44.
    K.-E. Andersson, R.G.G. Andersson, P. Hedner, and C.G.A. Persson, Life Sci. 20: 73–78 (1977).PubMedCrossRefGoogle Scholar
  45. 45.
    C. Spies, K.-D. Schultz, and G. Schultz, Naunyn Schmiedeberg’s Arch. Pharmacol. 311: 71–77 (1980).Google Scholar
  46. 46.
    P.A. Craven, and F.R. DeRubertis, Fed. Proc. 39: 1898 (1980).Google Scholar
  47. 47.
    D.L. Garbers, J. Biol. Chem. 251: 4071–4077 (1976).PubMedGoogle Scholar
  48. 48.
    S.-C. Tsai, V.C. Manganiello, and M. Vaughan, J. Biol. Chem. 253: 8452–8457 (1979).Google Scholar
  49. 49.
    J.M. Braughler, C.K. Mittal, and F. Murad, Proc. Nat. Acad. Sci. U.S.A. 76: 219–222 (1979).CrossRefGoogle Scholar
  50. 50.
    D.L. Garbers, J. Biol. Chem. 254: 240–243 (1979).PubMedGoogle Scholar
  51. 51.
    R. Gerzer, F. Hofmann, and G. Schultz, Hoppe-Seyler’s Z. Physiol. Chem. 361: 249 (1980).Google Scholar
  52. 52.
    J. Zwiller, and P. Mandel, C.R. Acad. Sc. Paris. 286: 423–426, (Series D) (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Joel G. Hardman
    • 1
  1. 1.Department of PharmacologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations