Advertisement

Contribution of the Theoretical Simulation to the Mechanistic Description of a Biochemical System: Application to the Adenylate Cyclase System

  • Stéphane Swillens
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 44)

Abstract

The advance in the mechanistic description of a biochemical system is the natural consequence of the accumulation of experimental results. The interpretation of these results usually leads to a general scheme describing the relations between the different components of the system. Such a scheme is, more often than not, a set of descriptive sentences, which are sometimes illustrated by a picture where arrows and conventional signs define biochemical interactions between the constituents. Less frequently is presented a complete description of the system in terms of component concentrations and of kinetic parameters of the reactions. Only in this latter case, the description might be referred to as a model of the system, since it contains the whole information required for generating the behaviour of the experimental system.

Keywords

Adenylate Cyclase Guanine Nucleotide Receptor Occupancy Adenylate Cyclase Activation Biochemical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Swillens and J. E. Dumont, Life Sci. 27: 1013–1028 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Swillens and J. E. Dumont, Mol. Cell Endocrin. 20: 233–242 (1980).CrossRefGoogle Scholar
  3. 3.
    M. Rodbell, L. Birnbaumer, S. L. Pohl and H. M. J. Krans, J. Biol Chem. 246: 1877–1882 (1971).PubMedGoogle Scholar
  4. 4.
    T. Pfeuffer and E. M. J. Helreich, J. Biol. Chem. 250: 867–876 (1975).PubMedGoogle Scholar
  5. 5.
    D. Cassel and Z. Selinger, Biochim. Biophys. Acta 452: 538–551 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Cassel and Z. Selinger, Proc. Natl. Acad. Sci. 75: 4155–4159 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Cassel, H. Levkovitz and A. Selinger, J. Cy_cl. Nucl. Res. 3: 393–406 (1977).Google Scholar
  8. 8.
    T. Pfeuffer, FEBS Letters 101: 85–89 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Cassel and Z. Selinger, J. Cycl. Nucl. Res. 3: 11–22 (1977).Google Scholar
  10. 10.
    L. E. Limbird and R. J. Lefkowitz, Proc. Natl. Acad. Sci. 75: 228–232 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    L. T. Williams and R. J. Lefkowitz, in: “Receptor Binding Studies in Adrenergic Pharmacology,” Raven Press, New York (1978).Google Scholar
  12. 12.
    G. A. Weiland, K. P. Minneman and P. B. Molinoff, Nature 281: 114–117 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Birnbaumer, C. F. Bearer and R. Iyengar, J. Biol. Chem: 255: 3552–3557 (1980).PubMedGoogle Scholar
  14. 14.
    A. M. Tolkovsky and A. Levitzki, Biochemistry 17: 3795–3810 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    J. P. Perkins, T. K. Harden and Y. F. Su in: “Catecholamines: Basic and Clinical Frontiers,” E. Usdin, I.J. Kopin and J. Barchas, eds., Pergamon Press, Elmsford, N.Y., Vol.1, pp.542–546 (1979).Google Scholar
  16. 16.
    H. Arad and A. Levitzki, Mol. Pharmacol. 16: 749–756 (1979).PubMedGoogle Scholar
  17. 17.
    P. A. Insel and L. M. Stoolman, Mol. Pharmacol. 14: 549–561 (1978).PubMedGoogle Scholar
  18. 18.
    W. L. Terasaki and G. Brooker, J. Biol. Chem. 253: 5418–5425 (1978).PubMedGoogle Scholar
  19. 19.
    Y. Citri and M. Schramm, Nature 287: 297–300 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Stéphane Swillens
    • 1
  1. 1.Institut de Recherche InterdisciplinaireFree University of Brussels, School of MedicineBrusselsBelgium

Personalised recommendations