Studies of Solubilized Adenylate Cyclase

  • Eva J. Neer
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 44)


To understand, in detail how adenylate cyclase works, we must understand its structure. One approach to this problem is to solubilize the enzyme in an active state, isolate and identify its components and reassemble the whole in a functional form. The first step of this process requires the use of detergents to solubilize adenylate cyclase since the enzyme is firmly membrane bound in all eukaryotic cells, except those from the mature rat testis1–4. Adenylate cyclase occurs in membranes in very small amounts, probably making up about 0.01–0.005% of the membrane protein4, therefore it is impossible to identify the enzyme by protein determination. This limits the kinds of detergents which one may use for solubilization because it is essential to retain enzymatic activity.


Sodium Dodecyl Sulfate Critical Micelle Concentration Adenylate Cyclase Guanine Nucleotide Adenylate Cyclase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



guanosine 5’ (ß,γ-imino)-triphosphate


the catalytic unit of adenylate cyclase


the component of the adenylate cyclase system which mediates activation of the catalytic unit by guanine nucleotides and fluorid.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Ross and A. G. Gilman, Ann. Rev. Biochem. 49:533–63 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    T. Braun and R. F. Dods, Proc. Natl. Acad. Sci. U.S.A. 72:1097–1101 (1975).CrossRefGoogle Scholar
  3. 3.
    E. J. Neer, J. Biol. Chem. 253:5808–5812 (1978).PubMedGoogle Scholar
  4. 4.
    E. J. Neer, in: “Receptors and Hormones Action,” B. W. O’Malley and L. Birnbaumer, eds., 463–484, Academic Press, New York (1977).Google Scholar
  5. 5.
    A. Helenius, D. R. McCaslin, E. Fries and C. Tanford, Methods in Enzymology 56:734–749 (1978).CrossRefGoogle Scholar
  6. 6.
    L. M. Hjelmeland, D. W. Nebert and A. Chrambach, in: “Electrophoresis,” N. Catsimpplas, ed., Elsevier, North Holland, Amsterdam (1978).Google Scholar
  7. 7.
    C. Tanford and J. A. Reynolds, Biochim. Biophys. Acta. 457:133–170 (1976).Google Scholar
  8. 8.
    A. Helenius and K. Simons, Biochim. Biophys. Acta. 415:29–79 (1975).Google Scholar
  9. 9.
    S. Makino, J. A. Reynolds and C. Tanford, J. Biol. Chem. 248: 4926:4932 (1973).Google Scholar
  10. 10.
    J. N. Umbriet and J. L. Strominger, Proc. Natl, Acad. Sci. U.S.A. 70:2997–3001 (1973).CrossRefGoogle Scholar
  11. 11.
    G. Guillon, C. Roy and S. Jard, Eur. J. Biochem. 92:341–348 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    McCutcheon’s Detergents and Emulsifiers, Nowth American Edition, MC Publishing Co., New Jersey (1979).Google Scholar
  13. 13.
    E. J. Neer, J. Biol. Chem. 253:1498–1502 (1978).PubMedGoogle Scholar
  14. 14.
    S. Clarke, J. Biol, Chem. 250:5459–5469 (1975).Google Scholar
  15. 15.
    H. L. Greenwald and G. L. Brown, J. Phys. Chem. 58:825–828 (1954).CrossRefGoogle Scholar
  16. 16.
    E. J. Neer, J. Biol. Chem. 249:6527–6531 (1974).PubMedGoogle Scholar
  17. 17.
    R. F. Asbury, G. H. Cook and J. Wolff, J. Biol. Chem. 253:5286–5292 (1978).PubMedGoogle Scholar
  18. 18.
    T. Haga, K. Haga and A. G. Gilman, J. Biol. Chem. 252:5776–5782 (1977).PubMedGoogle Scholar
  19. 19.
    D. Stengel and J. Hanoune, Eur. J. Biochem. 102:21–34 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    J. K. Northup, M. F. Renart, J. R. Grove and T. E. Mansour, J. Biol. Chem. 254:11861–11867 (1979).PubMedGoogle Scholar
  21. 21.
    K. J. Catt and M. J. Dufau, Ann. Rev. Physiol. 39:529–557 (1977).CrossRefGoogle Scholar
  22. 22.
    A. C. Howlett and A. G. Gilman, J. Biol. Chem. 255:2861–2866 (1980).PubMedGoogle Scholar
  23. 23.
    H. R. Kaslow, G. L. Johnson, V. M. Brothers and H. R. Bourne, J. Biol. Chem. 255:3736–3741 (1980).PubMedGoogle Scholar
  24. 24.
    Z. Farfel, H. R. Kaslow and H. R. Bourne, Biochem. Biophys. Res. Commun. 90:1237–1241 (1979).Google Scholar
  25. 25.
    K. M. Bhat, R. Iyengar, J. Abramowitx, M. E. Bordelon-Riser and L. Birnbaumer, Proc. Natl. Acad. Sci. U.S.A. 77:3836–3840 (1980).CrossRefGoogle Scholar
  26. 26.
    E. M. Ross, A. C. Howlett, K. M. Ferguson and A. G. Gilman, J. Biol. Chem. 253:6401–6412 (1978).PubMedGoogle Scholar
  27. 27.
    S. Eimerl, G. Neufeld, M. Korner and M. Schramm, Proc. Natl. Acad. Sci. U.S.A. 77760–764 (1980).Google Scholar
  28. 28.
    E. Ross, Fed. Proc. Fed._ Am. Soc. Exp. Biol. 39:2105 (1980).Google Scholar
  29. 29.
    E. J. Neer, D. Echeverria and S. Knox, J. Biol. Chem. 255:9782–9789.Google Scholar
  30. 30.
    S. Strittmatter and E. J. Neer, Proc. Natl. Acad, Sci. U.S.A. in press (1980).Google Scholar
  31. 31.
    J. C. H. Steele,Jr., C. Tanford and J. A. Reynolds, Methods in Enzymology48:11–23 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Eva J. Neer
    • 1
  1. 1.Department of MedicineHarvard Medical School and Brigham and Women’s HospitalBostonUSA

Personalised recommendations