Cancer and Transformation by Retroviruses

  • J. Deschamps
  • A. Burny
  • D. Portetelle
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 44)


Development of an individual is a very complex phenomenon under continuous genetic control from the one cell stage to adulthood, senescence and death. Each important stage along the differentiation pathway is characterized by expression of a given array of genes, each one of them at a given and well controlled rate. Control mechanisms of gene expression are mediated by specific molecules, products of certain genes. These molecules act as inducers, repressors, modulators, effectors, catalysts.... of specific metabolic reactions. Any event whose consequence would be an alteration, a block of synthesis, a dramatic decrease or increase in concentration of one of the crucial specific molecules, might, in principle, break cell harmony and lead to cancer. It is evident, within the frame of such a concept, that many physical, chemical and virological agents are candidates as disruptors of differentiation programmes. It is equally evident that cellular parameters will be of paramount importance to allow or prevent cell disturbance by outside factors.


Leukemia Virus Murine Leukemia Virus Bovine Leukemia Virus Mouse Mammary Tumor Virus Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Klein (ed.) (1980). Viral Oncology, 842 pp. Raven Press, New York.Google Scholar
  2. 2.
    Viral Oncogenes (1980). Cold Spring Harbor Symposia on Quantitative Biology, Vol. XLIV, 1400 pp. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.Google Scholar
  3. 3.
    M. Essex, G. Todaro and H. zur Hausen, (eds.)(1980). Viruses in naturally occuring Cancers, 1440 pp. In: “Cold Spring Harbor conferences on Cell Proliferation”, vol. 7. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.Google Scholar
  4. 4.
    J. Deschamps, A. Burny and J. M. Provost, (1980). Factors regulating cellular and viral genes expression in leukemogenesis. In: “Advances in comparative leukemia research 1979” ( D. S. Yohn, B. Lapin and J. R. Blakeslee ed.) pp. 75–81. Elsevier, North-Holland, N. Y.Google Scholar
  5. 5.
    W. D. Hardy, A. J. McClelland, E. E. Zulkerman, H. W. Snyder Jr., E. G. MacEwen, D. Francis and M. Essex, (1980). Development of virus non-producer lymphosarcomas in pet cats exposed to FeLV. Nature, 288: 90.PubMedCrossRefGoogle Scholar
  6. 6.
    J. Ghysdael, R. Kettmann and A. Burny, (1979). Translation of Bovine Leukemia Virus virion RNA in heterologous protein-synthesizing systems. J. Virol. 29: 1087.PubMedGoogle Scholar
  7. 7.
    J. G. Sutcliffe, T. M. Shinnick, I. M. Verna and R. A. Lerner, (1980). Nucleotide sequence of Moloney Leukemia Virus: 3’ end reveals details of replication, analogy to bacterial transposóns and an unexpected gene. Proc. Natl. Acad. Sci. U.S.A. 77: 3302.PubMedCrossRefGoogle Scholar
  8. 8.
    G. M. Cooper and P. E. Neiman, (1980). Transforming genes of neoplasms induced by avian lymphoid leukosis viruses. Nature 287: 656.PubMedCrossRefGoogle Scholar
  9. 9.
    M. S. McGrath, E. Pillemer, D. A. Kooistra, S. Jacobs, L. Jerabek and I. L. Weissman, (1980). T-lymphoma retroviral receptors and control of T-lymphoma cell proliferation. Cold Spring Harbor Symp. Quant. Bio., 44: 1297.CrossRefGoogle Scholar
  10. 10.
    R. C. Montelaro and D. P. Bolognesi, (1978). Structure and morphogenesis of type-C retroviruses. Adv. Cancer Res., 28: 63.PubMedCrossRefGoogle Scholar
  11. 11.
    J. Ghysdael, R. Kettmann and A. Burny, (1980). M-lecular aspects of RNA tumor virus biology. Pharmac. Ther., 9: 147.CrossRefGoogle Scholar
  12. 12.
    R. A. Weinberg, (1977). Structure of the intermediates leading to the integrated provirus. Biochim. Biophys. Acta, 473: 39.PubMedGoogle Scholar
  13. 13.
    A. Panet, (1980). Replication of murine leukemia viruses. In: “Viral Oncology”. ( G. Klein, ed.), pp. 109–134. Raven Press, New York, N.Y.Google Scholar
  14. 14.
    H. M. Temin, (1980). Origin of retroviruses from cellular moveable genetic elements. Cell, 21: 599.PubMedCrossRefGoogle Scholar
  15. 15.
    G. Todaro, (1980). Interspecies transmission of mammalian retro-viruses. In: “Viral Oncology”. ( G. Klein, ed.), pp. 291–310. Raven Press, New York, N.Y.Google Scholar
  16. 16.
    M. Roussel, S. Saule, C. Lagrou, C. Rommens, H. Beug, T. Graf and D. Stehelin, (1979). Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature, 281: 452.PubMedCrossRefGoogle Scholar
  17. 17.
    D. Sheiness, K. Bister, C. Moscovoci, L. Fanshier, T. Gonda, M. Bishop, (1980). Avian retroviruses that cause Carcinoma and Leukemia: identification of nucleotide sequences associated with pathogenicity. J. Virol., 33: 962.PubMedGoogle Scholar
  18. 18.
    K. Bister, H. C. Loliger and P. H. Duesberg, (1979). Oligonucleotide map and protein of CM II: detection of conserved and non-conserved genetic elements in avian acute leukemia viruses CM II, MC 29 and MH 2. J. Viral., 32: 208.Google Scholar
  19. 19.
    H. Beug, G. Kitchener, G. Doederlein, T. Graf and M. J. Hayman, (1980). Mutant of avian erythroblastosis virus defective for erythroblast transformation: deletion in the erb portion of p75 suggests function of the protein in leukemogenesis. Proc. Natl. Acad. Sci. U.S.A., 77: 6683.PubMedCrossRefGoogle Scholar
  20. 20.
    G. Ramsay, T. Graf, M. J. Hayman, (1980). Mutants of avian myelocytomatosis Virus with smaller gag gene-related proteins have an altered transforming ability. Nature, 288: 170.PubMedCrossRefGoogle Scholar
  21. 21.
    D. K. Sheiness, S. H. Hughes, H. E. Varmus, E. Stubblefield and J. M. Bishop, (1980). The vertebrate homolog of the putative transforming gene of Avian myelocytomatosis virus: characteristics of the DNA locus and its RNA transcript. Virology, 105: 415.PubMedCrossRefGoogle Scholar
  22. 22.
    S. H. Hugues, F. Payvar, D. Spector, R. T. Schimke, H. L. Robinson, G. S. Payne, J. M. Bishop and H. E. Varmus, (1979). Heterogeneity of genetic loci in chickens: Analysis of endogenous viral and non-viral genes by cleavage of DNA with restriction endonuclease. Cell, 18: 347.CrossRefGoogle Scholar
  23. 23.
    T. Graf, N. Ade and H. Beug, (1978). Temperature-sensitive mutant of avian erythroblastosis virus suggests a block of differentiation as mechanism-of leukemogenesis. Nature, 275: 496.PubMedCrossRefGoogle Scholar
  24. 24.
    K. H. Stenzel, R. Schwartz, A. L. Rubin and A. Novogrdsky, (1980). Chemical inducers of diffe-entiation in Friend leukemia cells inhibit lymphocyte mitogenesis, Nature, 285: 106.PubMedCrossRefGoogle Scholar
  25. 25.
    R. L. Erikson, (1980), Avian sarcoma viruses: molecular biology. In: “Viral Oncology”. (G. Klein, ed.), pp. 39–53. Raven Press, New York, N.Y.Google Scholar
  26. 26.
    B. M. Sefton, T. Hunter, K. Beemon, (1980). Temperaturesensitive transformation by Rous sarcoma virus and temperature sensitiveprotein kinase activity. J. Virol., 33: 220.PubMedGoogle Scholar
  27. 27.
    B. M. Sefton, T. Hunter, K. Beemon and W. Eckart, (1980). Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell, 20: 807.PubMedCrossRefGoogle Scholar
  28. 28.
    R. O. Hynes, (1980). Cellular location of viral transforming proteins. Cell, 21: 601.PubMedCrossRefGoogle Scholar
  29. 29.
    L. H. Wang, C. C. Halpern, M. Nadel and H. Hanafusa, (1978). Recombination between viral and cellular sequences generates transforming sarcoma virus. Proc. Natl. Acad. Sci. USA, 75: 5812.PubMedCrossRefGoogle Scholar
  30. 30.
    T. Yamamoto, J. Sivaswami Tyagi, J. B. Fagan, J. Gilbert, B. de Crombrugghe and I. Pastan, (1980). Molecular Mechanism for the capture and excision of the transforming Gene of Avian Sarcoma Virus, as suggested by Analysis of Recombinant Clones. J. Virol., 35: 436.PubMedGoogle Scholar
  31. 31.
    A. P. Czernilofsky, A. D. Levinson, H. F. Varmus, J. M. Bishop, E. Tischer and H. M. Goodman, (1980). Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino-acid sequence for gene product. Nature, 287: 198.PubMedCrossRefGoogle Scholar
  32. 32.
    D. G. Blair, W. L. McClements, M. K. Oskarsson, P. J. Fishinger and G. F. Van de Woude, (1980). Biological activity of cloned Moloney sarcoma virus DNA: Terminally redundant sequences may enhance transformation efficiency. Proc. Natl. Acad. Sci. USA, 77: 3504.PubMedCrossRefGoogle Scholar
  33. 33.
    A. Shields, S. Goff, M. Pasking, G. Otto, D. Baltimore, (1979). Structure of the Abelson Murine Leukemia Virus genome. Cell, 18: 955.Google Scholar
  34. 34.
    W. J. M. Van de Ven, F. H. Reynolds, Jr., P. Nalewaik and J. R. Stephenson, (1979). The nonstructural component of the Abelson Murine Leukemia Virus Polyprotein p120 is encoded by newly acquired genetic sequences. J. Virol., 32: 1041.PubMedGoogle Scholar
  35. 35.
    O. N. Witte, A. Dasgupta, D. Baltimore, (1980). Abelson Murine leukaemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature, 283: 826.PubMedCrossRefGoogle Scholar
  36. 36.
    W. J. M. Van de Ven, F. H. Reynolds, Jr., and J. R. Stephenson, (1980). The nonstructural components of polyproteins encoded by replication-defective mammalian transforming retroviruses are phosphorylated and have associated protein kinase activity. Virology, 101: 185.PubMedCrossRefGoogle Scholar
  37. 37.
    F. H. Reynolds, Jr., W. J. M. Van de Ven and J. R. Stephenson, (1980). Abelson murine leukemia virus transformation-defective mutants with impaired p120 - associated protein kinase activity. J. Virol., 36: 374.PubMedGoogle Scholar
  38. 38.
    P. Andersson, M. P. Goldfarb and R. A. Weinberg, (1979). A defined subgenomic fragment of in vitro synthesized Moloney sarcoma virus DNA can induce cell transformation upon transfection. Cell, 16: 63.PubMedCrossRefGoogle Scholar
  39. 39.
    M. H. T. Lai and I. M. Verna, (1980). Genome organization of retroviruses: VIII. Nonproducer cell lines of mouse fibroblasts transformed by Moloney murine sarcoma virus DNA synthesized in vitro. Virology, 104: 407.PubMedCrossRefGoogle Scholar
  40. 40.
    T. Y. Shih, A. G. Papageorge, P. E. Stokes, M. O. Weeks and E. Scolnick, (1980). Guanine nucleotide binding and autophosphorylating activities associated with the p2lsrc protein of Harvey murine sarcoma virus. Nature, 287: 686.PubMedCrossRefGoogle Scholar
  41. 41.
    M. C. Willingham, I. Pastan, T. Y. Shih and E. M. Scolnick, (1980). Localisation of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell, 19: 1005.PubMedCrossRefGoogle Scholar
  42. 42.
    I. Pastan and M. Willingham, (1978). Cellular transformation and the “morphologic phenotype” of transformed cells. Nature, 274: 645.PubMedCrossRefGoogle Scholar
  43. 43.
    R. A. Bosselman and I. M. Verma, (1980). Genome organization of retroviruses: V. in vitro synthesized Moloney murine leukemia viral DNA has, long terminal redundancy. J. Virol., 33: 487.PubMedGoogle Scholar
  44. 44.
    R. A. Bosselman, L. J. L. D. Van Griensven, M. Vogt and I. M. Verma, (1980). Genome organization of retroviruses: IX. Analysis of the genome of Friend Spleen Focus-forming (F-SFFV) and helper murine leukemia viruses by heteroduplexformation. Virology, 102: 234.PubMedCrossRefGoogle Scholar
  45. 45.
    D. H. Moore, C. A. Long, A. B. Vaidya, J. B. Sheffield, A. S. Dion and E. Y. Lasfarques, (1979). Mammary tumor viruses. In: “Advances in Cancer Research” ( G. Klein and Weinhouse, eds.), vol. 29, pp. 347–418. Academic Press, New York.Google Scholar
  46. 46.
    B. Groner and N. Hynes, (1980). Number and location of mouse mammary tumor virus proviral DNA in mouse DNA or normal tissue and of mammary tumors. J. Virol., 33: 1013.PubMedGoogle Scholar
  47. 47.
    P. S. Sarma and T. Log, (1973). Subgroup classification of feline leukemia and sarcoma viruses by viral interference and neutralization tests. Virology, 54: 160.PubMedCrossRefGoogle Scholar
  48. 48.
    C. J. Sherr, A. Sen, G. J. Todaro, A. Sliski and M. Essex, (1978). Pseudotypes of feline sarcoma virus contain an 85.000 dalton protein with feline oncornavirus associated cell membrane antigen (FOCMA) activity. Proc. Natl. Acad. Sci. USA. 75: 1505.PubMedCrossRefGoogle Scholar
  49. 49.
    P. S. Sarma, A. C. Sharar and S. McDonough, (1972). The SM strain of feline sarcoma virus biologic and antigenic characterization of virus. Proc. Soc. Exp. Biol. Med., 140: 1365.PubMedGoogle Scholar
  50. 50.
    W. J. M. Van de Ven, F. H. Reynolds, Jr., and J. R. Stephenson, (1980). The nonstructural components of polyproteins encoded by replication defective mammalian transforming viruses are phosphorylated and have associated protein kinase activity. Virology, 101: 185.PubMedCrossRefGoogle Scholar
  51. 51.
    R. Kettmann, D. Portetelle, M. Mammerickx, Y. Cleuter, D. Dekegel, M. Galoux, J. Ghysdael, A. Burny and R. Chantrenne, (1976). Bovine leukemia virus: an exogenous RNA oncogenic Virus. Proc. Natl. Acad. Sci. USA, 73: 1041.CrossRefGoogle Scholar
  52. 52.
    P. D. Markham, F. Ruscetti, S. Z. Salahuddin, R. E. Gallagher and R. C. Gallo, (1979). Enhanced induction of growth of B lymphoblasts from fresh blood by primate type C retro-viruses (gibbon ape leukemia virus and simian sarcoma virus). Int. J. Cancer 23: 148.PubMedCrossRefGoogle Scholar
  53. 53.
    M. S. Reitz, N. R. Miller, F. Wong-Staal, R. E. Gallagher, R. C. Gallo and D. H. Gillepsic, (1976). Primate type C virus nucleic acid sequences (woolly monkey and baboon types) in tissues from a patient with acute myelogenous leukemia and in viruses isolated from cultured cells of the same patient. Proc. Natl. Acad. Sci. USA., 73: 2113.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • J. Deschamps
    • 1
  • A. Burny
    • 1
    • 2
  • D. Portetelle
    • 1
    • 2
  1. 1.Department of Molecular BiologyUniversity of BrusselsRhode-St-GeneseBelgium
  2. 2.Faculty of AgronomyGemblouxBelgium

Personalised recommendations