The Central Role of Calcium in Stimulus-Secretion Coupling: General Concepts and the Specialized Example of the Polymorphonuclear Leukocyte

  • Elizabeth Schell-Frederick
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 44)


Secretion is a fundamental activity of complex organisms. Some cells are highly specialized in the synthesis and export of secretory products, e.g., the pancreatic exocrine cell, the β cell of the pancreatic islet, the mast cell, the chromaffin cell of the adrenal medulla, the acinar cell of the salivary gland. But the intracellular machinery for secretion appears to exist in all cell types except the erythrocyte.


Actin Filament Secretory Granule Chromaffin Cell Adrenal Medulla Calcium Entry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Palade, Intracellular aspects of the process of protein synthesis, Science 189: 347 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    W.W. Douglas and R.P. Rubin, The role of calcium in the secretory response of the adrenal medulla to acetylcholine, J. Physiol. 159: 40 (1961).PubMedGoogle Scholar
  3. 3.
    A. Sandow, Excitation-contraction coupling in muscular response, Yale J. Biol. Med. 25: 176 (1952).PubMedGoogle Scholar
  4. 4.
    W.W. Douglas, Stimulus-secretion coupling: the concept and clues from chromaffin and other cells, Br. J. Pharmac. 34: 451 (1968).CrossRefGoogle Scholar
  5. 5.
    E.K. Matthews, Calcium translocation and control mechanisms for endocrine secretion, in: Secretory Mechanisms, Society for Experimental Biology Symposium XXXIII, C.R. Hopkins and C.J. Duncan, eds., Cambridge University Press, p. 225 (1979).Google Scholar
  6. 6.
    W.W. Douglas, The role of calcium in stimulus-secretion coupling, in: Stimulus-Secretion Coupling in the Gastrointestinal Tract, R.M. Case and H. Goebell, eds., MTP Press Ltd, Lancaster, England, p. 17 (1976).Google Scholar
  7. 7.
    H. Rasmussen, G. Clayberger and M.C. Gustin, The messenger function of calcium in cell activation, in: Secretory Mechanisms, Society for Experimental Biology Symposium XXXIII, C.R. Hopkins and C.J. Duncan, eds, Cambridge University Press, p. 161 (1979).Google Scholar
  8. 8.
    M. Schramm and Z. Selinger, Neurotransmitters, receptors, second messengers and responses in parotid gland and pancreas, in: Stimulus-Secretion Coupling in the Gastrointestinal Tract, R.M. Case and H. Goebell, eds, MTP Press Ltd, Lancaster, England, p. 49 (1976).Google Scholar
  9. 9.
    T.B. Bolton, Mechanisms of action of transmitters and other substances on smooth muscle, Phys. Revs. 59: 606 (1979).Google Scholar
  10. 10.
    R.H. Michell, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415: 81 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    R.H. Michell, Inositol phospholipids in membrane function, Trends in Biochemical Science 4: 128 (1979).CrossRefGoogle Scholar
  12. 12.
    M.J. Berridge and J.N. Fain, Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine, Biochem. J. 178: 59 (1979).PubMedGoogle Scholar
  13. 13.
    B. Satir, The final steps in secretion, Sci. Am. 233: 28 (October 1975).CrossRefGoogle Scholar
  14. 14.
    E. Lazarides and J.P. Revel, The molecular basis of cell movement, Sci. Am. 240: 88 (May 1979).CrossRefGoogle Scholar
  15. 15.
    O.I. Stendhal and T.P. Stossel, Actin-binding protein amplifies actomyosin contraction and gelsolin confers calcium control on the direction of contraction, Biochem. Biophys. Res. Comm. 92: 675 (1980).CrossRefGoogle Scholar
  16. 16.
    M. Gratzl and G. Dahl, Cat+-induced fusion of Golgi-derived Secretory vesicles isolated from rat liver, FEBS Letters 62: 142 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Allan and R.H. Michell, The possible role of lipids in control of membrane fusion during secretion, in: Secretory Mechanisms, Society for Experimental Biology Symposium XXXIII, C.R. Hopkins and C.J. Duncan, eds., Cambridge University Press, p. 323 (1979).Google Scholar
  18. 18.
    I.M. Goldstein, J.K. Horn, H.B. Kaplan and G. Weissmann, Calcium-induced lysozyme secretion from human polymorphonuclear leukocytes, Biochem. Biophys. Res. Comm. 60: 807 (1974).PubMedCrossRefGoogle Scholar
  19. 19.
    D.G. Wright and J.I. Gallin, Secretory responses of human neutrophils: Exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo, J. Immunol. 123: 285 (1979).PubMedGoogle Scholar
  20. 20.
    D.G. Wright and J.I. Gallin, A functional differentiation of human neutrophil granules: Generation of C5a by a specific (secondary) granule product and inactivation of C5a by azurophil (primary) granule products, J. Immunol. 119: 1068 (1977).PubMedGoogle Scholar
  21. 21.
    R.B. Zurier, S. Hoffstein and G. Weissman, Cytochalasin B: effect on lysosomal enzyme release from human leucocytes, Proc. Natl. Acad. Sci. 70: 844 (1973).PubMedCrossRefGoogle Scholar
  22. 22.
    G. Zabucchi, R. Soranzo, F. Rossi and D. Romeo, Exocytosis in human polymorphonuclear leukocytes induced by A23187 and calcium, FEBS Letters, 54: 44 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    E. Schell-Frederick, Stimulation of the oxidative metabolism of polymorphonuclear leucocytes by the calcium ionophore A23187, FEBS Letters 48: 37 (1974).PubMedCrossRefGoogle Scholar
  24. 24.
    D.G. Wright, D.A. Bralove and H.I. Gallin, The differential mobilization of human neutrophil granules: Effects of phorbol myristate acetate and ionophore A23187, Am. J. Pathol. 87: 273 (1977).PubMedGoogle Scholar
  25. 25.
    P.H. Naccache, H.J. Showell, E.L. Becker and R.I. Sha’afi, Changes in ionic movements across rabbit pholymorphonuclear leukocyte membranes during lysosomal enzyme release: Possible ionic basis for lysosomal enzyme release, J. Cell Biol. 75: 635 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Hoffstein, Ultrastructural demonstration of calcium loss from local regions of the plasma membrane of surface-stimulated human granulocytes, J. Immunol. 123: 1395 (1979).PubMedGoogle Scholar
  27. 27.
    A. Barthelemy, R. Paridaens and E. Schell-Frederick, PhagocytosisInduced 45calcium efflux in polymorphonuclear leucocytes, FEBS Letters 82: 283 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    T.P. Stossel, J.H. Hartwig, H.L. Yin and O. Stendahl, The motor of amoeboid leucocytes, Biochem. Soc. Symp. 45: 51 (1980).PubMedGoogle Scholar
  29. 29.
    J.H. Hartwig and T.P. Stossel, Interactions of actin, myosin, and an actin-binding protein of rabbit pulmonary macrophages III effects of cytochalasin B, J. Cell Biol. 71: 295 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Elizabeth Schell-Frederick
    • 1
  1. 1.Institut de Recherche InterdisciplinaireUniversité Libre de BruxellesBelgium

Personalised recommendations